Bookmark and ShareShare

Enabling Technology Platforms

The Wyss Institute focuses its research and development efforts on six Enabling Technology Platforms to create new bioinspired materials and devices, and to translate them into products. These Platforms are teams of Institute faculty, students, fellows and expert research scientists and engineers with extensive industrial experience, who develop entirely new technologies necessary to advance bioinspired material and device development, with a focus on specific high-value application areas. These platforms are essentially ‘Cores that create other Cores,’ as prototype technologies developed through these activities eventually will be made available to all members of the Wyss community. The platforms also provide the Wyss community with unique technical resources and state-of-the-art equipment, as well as a rich environment for students and staff to learn how to translate ideas and discoveries into products with great clinical or commercial value. The Institute’s Enabling Technology Platforms are:

Adaptive Material Technologies

The biological designs of living organisms offer lessons in environmental responsiveness, optimization, and self-healing. The Adaptive Material Technologies Platform applies these lessons to create biomimetic materials and devices that respond to environmental cues like living organisms. The long-range vision is to design entire buildings that adapt their shape and function to continuously optimize energy efficiency, thermal gain, and other properties critical for sustainability.

Anticipatory Medical and Cellular Devices

Imagine a wearable device so attuned to the body’s dynamic physiology that it can sense and ward off an acute medical crisis, such as a heart attack, diabetic shock, or a terrible fall. The Anticipatory Medical and Cellular Devices Platform aims to meet this goal with wireless devices designed to sense the breakdown of natural body rhythms and to restore lost functions, or to intervene automatically before life-threatening events occur.

Bioinspired Robotics

Scientists in the Bioinspired Robotics Platform are developing entirely new types of robotic devices that move and adapt like living creatures. Taking cues from flying insects, social insect colonies, and a growing embryo, one long-range vision is to develop robots that work together to build larger structures with unique properties, such as the ability to span a ravine or forge an escape route for earthquake victims.

Biomimetic Microsystems

When scientists started fabricating microchips from silicon they opened doors to the modern age of electronics. The Biomimetic Microsystems Platform uses similar approaches to engineer tiny devices containing human cells, mimicking the blood vessels and tissues of living organs. Platform scientists are using these organs-on-a-chip to accelerate development of new pharmaceuticals, identify toxins in the environment, and treat life-threatening diseases, such as sepsis in hospitalized patients.

Programmable Nanomaterials

The Programmable Nanomaterials Platform emulates the natural process of molecular self-assembly to create materials that can seek out injury sites, deliver drugs, and promote tissue repair. Platform scientists also work to engineer medical devices that can be controlled remotely, such as heart pacemakers triggered by magnets instead of wires, hormone production spurred by flashes of light, or limb regeneration stimulated by electric fields.

Synthetic Biology

The Synthetic Biology Platform replicates evolutionary processes to create a broad diversity of biomolecular components, which can be used to target drugs to specific sites in the body, and to create gene circuits for reprogramming cell behavior. The unprecedented ability to generate virtually any molecular structure quickly – and at low cost – gives scientists new tools to reverse cancer, deliver stem cells to injury sites, and engineer microbes that produce biodegradable plastics or generate energy.

We've won a Webby Award!

Wyss Institute is proud to announce our win in the 2012
Webby Awards in the Science category.