Multimedia search results
12 Results for ''
-
Video/AnimationWyss Institute Brain Targeting ProgramThis animation explains how Wyss Institute researchers and their industry partners aim to identify novel transport targets and shuttle compounds to enable more effective delivery of drugs to the brain. Credit: Wyss Institute at Harvard University.
-
Video/AnimationInterrogator: Human Organ-on-ChipsThis video describes the “Interrogator” instrument that can be programmed to culture up to 10 different Organ Chips and sequentially transfer fluids between their vascular channels to mimic normal human blood flow between the different organs of our body. Its integrated microscope enables the continuous monitoring of the tissues’ integrities in the individual organ chips...
-
Video/AnimationHip-only Soft Exosuit for both Walking and RunningThis video demonstrates the use of the hip-assisting exosuit in different natural environments, and shows how the robotic device senses changes in the gait-specific vertical movements of the center of mass during walking and running to rapidly adjust its actuation. Credit: Wyss Institute at Harvard University
-
Video/AnimationSoft Exosuit: Human-in-the-Loop Bayesian OptimizationResearchers from the Wyss Institute and Harvard SEAS have developed a human-in-the-loop Bayesian optimization method to personalize the hip assistance that a soft exosuit can provide. The optimized assistance helps reduce metabolic cost compared to walking without the device, or with the device not further personalized. Credit: Harvard Biodesign Lab/Harvard Agile Robotics Lab Learn more...
-
Video/AnimationPrimer Exchange ReactionIn this video, Jocelyn Kishi illustrates how Primer Exchange Reaction (PER) cascades work to autonomously create programmable long single-stranded DNA molecules. Credit: Wyss Institute at Harvard University.
-
Audio/PodcastFormer DI Hoopster Searches For Athletic Boost In The MicrobiomeFormer DI Hoopster Searches For Athletic Boost In The Microbiome was originally broadcast on WBUR’s Only a Game on August 4, 2017. The story features Wyss Core Faculty member George Church and Postdoctoral Fellow Jonathan Scheiman. The original broadcast story can be found here.
-
Video/AnimationHow plant stems grow into different shapesIt is well known that as plants grow, their stems and shoots respond to outside signals like light and gravity. But if plants all have similar stimuli, why are there so many different plant shapes? Using simple mathematical ideas, Harvard University researchers constructed a framework that explains and quantifies the different shapes of plant stems....
-
Audio/PodcastDisruptive: Sports GenomicsWith 100 trillion cells in the human body, bacteria outnumber our own human cells 2 to 1. These bacteria make up one’s microbiome, and particularly bacteria in our guts affect all our key organ functions. They play a role in our health, development and wellness, including endurance, recovery and mental aptitude. In this episode of...
-
Video/AnimationSmoking Human Lung Small Airway-on-a-ChipIn this video, Wyss Founding Director Donald Ingber and Technology Development Fellow Kambez Benam explain how the integrated smoking device mimics normal cigarette smoke exposure and how it can impact research into the causes of COPD and into new biomarkers and therapeutics. Credit: Wyss Institute at Harvard University
-
Video/AnimationBioprinting: The Kidney’s Proximal TubulesIn this video, see how the Wyss Institute team has advanced bioprinting to the point of being able to fabricate a functional subunit of a kidney. Credit: Wyss Institute at Harvard University
-
Video/AnimationDesigning Fusion-Protein TherapiesIn this video, watch the new computational model in action as it simulates the behavior of a fusion-protein drug molecule after the targeting protein has attached to a cell. Developed by Wyss researchers, this model helps design more effective biologic drugs while eliminating drug candidates that are prone to causing side effects. Credit: Harvard’s Wyss...
-
Video/AnimationNeuroAssessA team at Harvard’s Wyss Institute and Beth Israel Deaconess have developed a computer tablet application that could rapidly and quantitatively assess neuromuscular performance. Credit: Wyss Institute at Harvard University