Multimedia
- Multimedia Type
- Focus Areas
- 3D Organ EngineeringHighly functional, multiscale, vascularized organ replacements that can be seamlessly integrated into the body
- Bioinspired Therapeutics & DiagnosticsTherapeutic discovery and diagnostics development enabled by microsystems engineering, molecular engineering, computational design, and organ-on-a-chip in vitro human experimentation technology
- Computational Design & DiscoveryCombining predictive bioanalytics and machine learning with physical and mathematical modeling and simulation
- Diagnostics AcceleratorDeveloping new diagnostic technologies that solve important healthcare challenges through collaboration at the Wyss Institute with clinicians and industry partners
- Immuno-MaterialsMaterial-based systems capable of modulating immune cells ex vivo and in the human body to treat or diagnose disease
- Living Cellular DevicesRe-engineered living cells and biological circuits as programmable devices for medicine, manufacturing and sustainability
- Molecular RoboticsSelf-assembling molecules that can be programmed like robots to carry out specific tasks without requiring power
- Synthetic BiologyBreakthrough approaches to reading, writing, and editing nucleic acids and proteins for multiple applications, varying from healthcare to data storage
- Technology Areas
- 3D Printing
- Actuators
- Biomarker
- Building Materials
- Cell Therapy
- Diagnostics
- Disease Model
- DNA Nanostructures
- Drug Development
- Filtration & Separation
- Gene Circuits
- Imaging
- Immunotherapy
- Medical Devices
- Microbiome
- Microfabrication
- Microfluidics
- Microsystems
- Nanodevices
- Organs on Chips
- Robots
- Sensors
- Surface Coatings
- Therapeutics
- Vaccines
- Wearable Devices
- Disciplines
- Aging
- Architecture
- Biochemistry
- Bioinformatics
- Biotechnology
- Cell Biology
- Chemical Engineering
- Chemistry
- Computer Science
- Control
- Design
- Electrical Engineering
- Genetics
- Genome Engineering
- Immune Engineering
- Materials Science
- Mechanical Engineering
- Mechanobiology
- Medicine
- Microtechnology
- Nanobiotechnology
- Nanotechnology
- Pharmacology
- Physics
- Physiology
- Polymer Chemistry
- Regenerative Medicine
- Robotics
- Self Assembly
- Stem Cell Engineering
- Surgery
- Synthetic Biology
- Tissue Engineering
- Toxicology
- Application Areas
- Anti-aging
- Apparel
- Bacteria
- Balance & Motor Control
- Brain Disease
- Cancer
- Diabetes
- Drug Development
- Energy
- Fundamental Research
- Heart Disease
- Hemostasis
- Infectious Disease
- Inflammatory Diseases
- Intestinal Disease
- Kidney Disease
- Liver Disease
- Lung Disease
- Manufacturing
- Motor Control
- Personalized Medicine
- Rehabilitation
- Sepsis
- Stroke
- Sustainability
- Targeted Drug Delivery
- Toxicology
- Water
- Women's Health
0 Results for No Current Selection
-
Video/Animation20-ish Questions with Natalie Artzi20-ish Questions shows a different side of Wyss Institute faculty, touching on aspects of their personal life, hobbies, interests, as well as their research. This round follows Natalie Artzi, a new addition to the Wyss Institute’s Core Faculty. Credit: Wyss Institute at Harvard University
-
Audio/PodcastPlastic in our blood? That’s a problem. – Harvard ThinkingOur planet is filled with plastic. On average, we produce 430 million tons every year, most of which is used only for a short period of time and then discarded. But plastic isn’t just in the environment: it’s now in our bodies. Microplastics have been found in our bloodstreams, lungs, and other organs, and we’re...
-
Video/AnimationProgress, Potential, and Possibilities with Luba Perry, Ph.D. – Bioengineered Breast Reconstruction And AugmentationEach episode of this podcast includes a discussion with fascinating people designing a better tomorrow. Luba Perry, Ph.D. is Co-Founder and CEO of ReConstruct Bio, an innovative venture emerging from Harvard’s Wyss Institute, aimed at redefining the fields of medical reconstruction and aesthetics with an initial application of their groundbreaking technology on breast reconstruction and...
-
Video/AnimationDoriNano – Improved DNA Origami Nanodelivery to Fight Cancer and Other DiseasesWe’re developing DNA Origami nanodelivery, which is transforming nanoparticle industry. Developed at the Dana Farber Cancer Institute and the Wyss Institute at Harvard University, this innovative approach overcomes the challenges of other nanoparticles, offering stability, high drug loading capacity, nano-scale control of cargo spacing, and more – making it a highly customizable solution for delivering...
-
Video/AnimationProject Air: Bioinspired Sensor of Volatile CompoundsWe are bringing to market an innovative, bioinspired sensor of volatile compounds that gives building operators confidence in the measurement of gasses indoors and provides guidance to achieving healthy indoor air quality (IAQ). Project Air is affordable, accurate, and highly sensitive thanks to the advanced data collection and processing implemented to substantially increase the reliability...
-
Video/AnimationArbor Armor: Could FcMBL Save The Peach Industry?Brown rot is one of the most devastating peach diseases, affecting both home and commercial orchards. When a member of the Wyss community discovered the disease on his peach tree, he mentioned his concerns with others in our community. What he didn’t expect was that his colleague potentially had a novel solution using an existing...
-
Video/AnimationDeep-dive Molecular Blueprinting of Therapeutic Nanostructures | Anastasia ErshovaAnastasia Ershova, a scientist at the Wyss, introduces the innovative field of bionanotechnology. In this talk from LabWeek Field Building, she explores how this cutting-edge science is revolutionizing therapeutics and diagnostics by building molecules that interact with the body in novel ways. Ershova discusses DNA nanotechnology, where DNA is used as a material to create...
-
Video/AnimationJoin Our Community of Practical DreamersAre you a collaborative, impact-focused problem solver who wants to be part of a dynamic team dedicated to creating and commercializing technology solutions for healthcare and sustainability? Join our Wyss community! Visit Wyss Careers to learn more and discover career opportunities at the Wyss Institute. Credit: Wyss Institute at Harvard Universisty
-
Video/AnimationAminoX: Making Better Protein Drugs, Quicker and CheaperA synthetic biology and advanced chemistry platform that efficiently incorporates non-standard amino acids by hacking the ubiquitous protein synthesis process. Credit: Wyss Institute at Harvard University
-
Video/AnimationReachable – Restoring arm function after strokeThe Reachable project from Conor Walsh’s lab is a wearable shoulder device that assists patients with upper limb disability. Stroke survivor and collaborator, Julie Hahnke, shares her experience working with the research team, using the current prototype, and her hopes for how this technology could improve the rehabilitation outcomes of stroke patients and others suffering...
-
Video/AnimationInnovating Diagnostics to Improve Clinical Care and Patient OutcomesGuest speaker, Sarah-Beth Perullo, shares the immense difficulty she faced in obtaining a diagnosis for her mysterious symptoms. Her story is a sobering reminder of how frequent patient symptoms are dismissed in the medical field. Credit: Wyss Institute at Harvard University
-
Video/AnimationMice Don’t Menstruate: Reimagining Women’s Health Using Organ Chips with Dr. Donald IngberIn this episode, host Sharon Kedar, Co-Founder of Northpond Ventures, is joined by Dr. Donald Ingber, Founding Director at Wyss Institute for Biologically Inspired Engineering at Harvard University. Dr. Ingber’s commitment to following his passion has led him to countless medical and technological breakthroughs, including Organ Chip technology. These incredible chips recreate the structure and...