Multimedia search results
15 Results for ''
-
Video/AnimationOur Sustainable FutureThe Wyss Institute is developing sustainable materials and devices to ensure a bright future and a healthy planet for future generations to inherit. Credit: Wyss Institute at Harvard
-
Video/AnimationVesma – Refrigerant-Free, Eco-Friendly Cooling for All ClimatesAn interdisciplinary team from the Wyss Institute, Harvard School of Engineering and Applied Sciences, and Harvard Graduate School of Design is continuing to advance global climate solutions for building cooling. By combining the evaporative cooling technology, cSNAP, and vacuum membrane dehumidification, the team has developed a refrigerant-free, eco-friendly cooling solution suitable for all climates. Credit:...
-
Video/AnimationcSNAP: Reimagining CoolingWe are reimagining air-conditioners to meet increasing global cooling demand while combatting climate change. Our novel evaporative cooling technology, cSNAP, uses advanced materials science and design to make affordable, environmentally-positive eco-friendly air conditioners that work in most climates without the use of synthetic refrigerants. Credit: Wyss Institute at Harvard University
-
Video/AnimationRobobee: Saving Energy While in the AirThe RoboBee, pioneered at the Harvard Microrobotics Lab, uses an electrode patch and a foam mount that absorbs shock to perch on surfaces and conserve energy in flight. Credit: Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS)
-
Video/Animation3D Printing Metal in MidairIn this video, see the laser-assisted method developed by Wyss Core Faculty member Jennifer Lewis that allows metal to be 3D printed in midair. Credit: Lewis Lab / Wyss Institute at Harvard University
-
Audio/PodcastDisruptive: Synthetic BiologyWhat sorts of breakthroughs are possible by modifying an organism’s genome – something researchers are now able to do ever more cheaply and efficiently? Researchers around the world are already able to program microbes to treat waste water, generate electricity, manufacture jet fuel, create hemoglobin, and fabricate new drugs. What sounds like science fiction to...
-
Video/AnimationFluid GateIn this video, the fluid-based gating mechanism separates gas and water. The fluid-filled pores system leverages pressurization to control the opening and closing of its liquid gates, making it extremely precise at separating mixed materials. Credit: Wyss Institute at Harvard University
-
Video/AnimationDynamic Daylight Redirection SystemThis video shows Keojin Jin conducting a shoebox test that shows the light reflection effect to the top surface of the box as well as the reduction of direct light to the bottom surface of the box. Credit: Wyss Institute at Harvard University
-
Video/Animation3D Printing: Cellular CompositesMaterials scientists at Harvard University have created lightweight cellular composites via 3D printing. These fiber-reinforced epoxy composites mimic the structure and performance of balsa wood. Because the fiber fillers align along the printing direction, their local orientation can be exquisitely controlled. These 3D composites may be useful for wind turbine, automotive and aerospace applications, where...
-
Video/AnimationTERMESInspired by termites, the TERMES robots act independently but collectively. They can carry bricks, build staircases, and then climb them to add bricks to a structure. Credit: Wyss Institute at Harvard University
-
Video/AnimationTiny 3D-Printed BatteryIn this video, a 3D-printer nozzle narrower than a human hair lays down a specially formulated “ink” layer by layer to build a microbattery’s anode from the ground up. Unlike ink in an office inkjet printer, which comes out as droplets of liquid and wets a piece of paper, these 3D-printer inks are specially formulated...
-
Video/AnimationSLIPS‘SLIPS’ technology, inspired by the slippery pitcher plant that repels almost every type of liquid and solid, is a unique approach to coating industrial and medical surfaces that is based on nano/microstructured porous material infused with a lubricating fluid. By locking in water and other fluids, SLIPS technology creates slick, exceptionally repellent and robust self-cleaning...
-
Video/AnimationTermite-inspired robotsInspired by termites and their building activities, the TERMES project is working toward developing a swarm construction system in which robots cooperate to build 3D structures much larger than themselves. The current system consists of simple but autonomous mobile robots and specialized passive blocks; the robot is able to manipulate blocks to build tall structures,...
-
Video/AnimationSLIPS: Keeping Ice AwayWhat if we could design surfaces that prevent ice formation? ‘SLIPS’ technology, inspired by the slippery pitcher plant that repels almost every type of liquid and solid, is a unique approach to coating industrial and medical surfaces that is based on nano/microstructured porous material infused with a lubricating fluid. By locking in water and other...
-
Audio/PodcastBuilding a Sustainable FutureIn this episode of Harvard Medical LabCast, Harvard Medical School Professor of Systems Biology and Wyss Institute Core Faculty, Pam Silver discusses engineering organisms that produce fuel and even food. Find out how she’s working to build a sustainable future through synthetic biology.