Multimedia search results
7 Results for ''
-
Audio/PodcastDisruptive: Sports GenomicsWith 100 trillion cells in the human body, bacteria outnumber our own human cells 2 to 1. These bacteria make up one’s microbiome, and particularly bacteria in our guts affect all our key organ functions. They play a role in our health, development and wellness, including endurance, recovery and mental aptitude. In this episode of...
-
Video/AnimationShear-Thinning Biomaterial: Catheter InjectionThis movie shows the solid state of the shear-thinning biomaterial immediately after release from the catheter into an aqueous solution (00:04). The STB is cohesive and remains as one solid piece throughout the injection process. There is no noticeable dissolution of the STB into the solution, suggesting it is stable immediately after being discharged from...
-
Audio/PodcastDisruptive: Mechanotherapeutics – From Drugs to WearablesMechanobiology reveals insights into how the body’s physical forces and mechanics impact development, physiological health, and prevention and treatment of disease. The emerging field of Mechanotherapeutics leverages these insights towards the development of new types of pharmaceuticals, drug delivery systems, engineered tissues, and wearable therapeutic devices that leverage physical forces or target mechanical signaling pathways...
-
Video/AnimationMechanotherapeutics: From Drugs to WearablesThe Wyss Institute’s 7th annual international symposium focused on advances in the field of Mechanobiology that have resulted in the development of new types of pharmaceuticals, drug delivery systems, engineered tissues, and wearable therapeutic devices that leverage physical forces or target mechanical signaling pathways as a core part of their mechanism of action. Organized by...
-
Video/AnimationBioinspired Blood Repellent CoatingIn this video, Wyss Institute Founding Director Don Ingber, Core Faculty member Joanna Aizenberg, Staff Scientist Dan Leslie and Postdoctoral Fellow Anna Waterhouse explain how a coating they developed using FDA-approved materials could prevent blood clotting in medical devices without the use of blood thinners. Credit: Wyss Institute at Harvard University
-
Video/AnimationNanoRx: Clot-Busting NanotherapeuticIn this animation, learn how the Wyss Institute clot-busting nanotherapeutic is activated by fluid high shear force – which occurs where blood flows through vessels narrowed by obstruction – to specifically target clots and dissolve them away. By pairing this drug with an intra-arterial device that restores blood flow to complete obstructions, the drug-device combination...
-
Video/AnimationClot-busting nanotherapeuticWyss Core Faculty member Donald E. Ingber describes the clot-busting nanotherapeutic. Credit: Wyss Institute at Harvard University