Search results
92 Results for 'Molecular Robotics'
- Technologies (7)
- Team (0)
- News (67)
- Events (0)
- Multimedia (18)
- Publications (0)
- Jobs (0)
Technologies 7
-
NAB-SPEAR: Measuring the Strength of COVID-19 Immune Responses
Vaccinations to protect people from the novel SARS-CoV-2 virus are well underway, but many outstanding questions have yet to be answered: how can a patient know if their body has mounted an effective immune response? How long does that immune response last? Is a person “safe” from COVID-19 after their first vaccine dose? Will their... -
DNA Nanotechnology Tools – From Design to Applications
DNA nanostructures with their potential for cell and tissue permeability, biocompatibility, and high programmability at the nanoscale level are promising candidates as new types of drug delivery vehicles, highly specific diagnostic devices, and tools to decipher how biomolecules dynamically change their shapes, and interact with each other and with candidate drugs. Wyss Institute researchers are... -
Toehold Probes for Nucleic Acid Detection
The accurate detection of specific DNA or RNA sequences is important for many research and diagnostic applications, and unspecific detection of similar sequences that can differ by only a single nucleotide can give false positive results. In addition, researchers and clinicians would like to accurately test for presence or absence of multiple single base changes... -
Toehold Switches for Synthetic Biology
The burgeoning field of synthetic biology is designing artificial gene circuits that recognize molecules in their environment and respond by regulating genes with desired activities. In the future, such capabilities could allow the engineering of cells as diagnostic or therapeutic devices, factories for the production of clinically or industrially coveted molecules, and as specialized devices... -
DNA Nanostructures for Drug Delivery
Researchers at the Wyss Institute have developed two methods for building arbitrarily shaped nanostructures using DNA, with a focus on translating the technology towards nanofabrication and drug delivery applications. One proprietary nanofabrication technique, called “DNA-brick self-assembly,” uses short, synthetic strands of DNA that work like interlocking Lego® bricks. It capitalizes on the ability to program... -
Multiplexed Molecular Force Spectroscopy
Programmable DNA nanoswitches, invented at the Wyss Institute, can now be used in combination with a benchtop Centrifuge Force Microscope (CFM) as a highly reliable tool to observe thousands of individual molecules and their responses to mechanical forces in parallel. By analyzing the responses of single molecules under conditions where they experience such forces, it is possible...
News 67
Multimedia 18
-
Video/AnimationBeating Back the CoronavirusWhen the coronavirus pandemic forced Harvard University to ramp down almost all on-site operations, members of the Wyss Institute community refocused their teams, and formed new ones, in order to fight COVID-19 on its multiple fronts. These efforts include building new pieces of personal protective equipment that were delivered to frontline healthcare workers, developing new...
-
Video/AnimationLighting up proteins with Immuno-SABERThis animation explains how Immuno-SABER uses the Primer Exchange Reaction (PER) to enable the simultaneous visualization of multiple proteins in tissues in different applications. Credit: Wyss Institute at Harvard University.
-
Video/AnimationSABER-FISH: Enabling the sensitive and multiplexed detection of nucleic acids within thick tissuesThis animation shows how SABER-FISH uses a suite of DNA nanotechnological methods that together enable the sensitive and multiplexed detection of DNA and RNA targets within cells and thick tissues. Credit: Wyss Institute at Harvard University
-
Video/AnimationToehold Exchange ProbesThis animation explains how toehold probes consisting of a “probe strand” and a “protector strand” are assembled and how they leverage thermodynamic principles to allow the specific detection of a correct target sequence, or to prevent them from detecting a spurious target sequence that can differ from the correct target sequence by only a single...
-
Exchange-PAINT: Neurons Up Close and PersonalDNA Exchange Imaging of fixed mouse hippocampal neurons stained sequentially with antibodies recognizing neuronal markers Synapsin I, vGAT, MAP2, pNFH, α-tubulin, acetyl-tubulin, GFAP and nuclear marker DAPI. Credit: Wyss Institute at Harvard University
-
Video/AnimationPrimer Exchange ReactionIn this video, Jocelyn Kishi illustrates how Primer Exchange Reaction (PER) cascades work to autonomously create programmable long single-stranded DNA molecules. Credit: Wyss Institute at Harvard University.