Search results
15 Results for 'Tissue Regeneration'
- Technologies (3)
- Team (0)
- News (10)
- Events (0)
- Multimedia (2)
- Publications (0)
- Jobs (0)
Technologies 3
-
Bone Marrow-Like Scaffolds for Accelerating Immune Reconstitution
Bone marrow transplants containing hematopoietic stem cells from an immune-compatible (“allogeneic”) donor can cure patients with otherwise fatal blood disorders including multiple myeloma and leukemias by reconstituting their entire immune systems after chemotherapy. However, following such a “hematopoietic stem cell transplantation” (HSCT), the restoration of T cell immunity – which depends on the production of... -
Regenerating Tissues with Sustained Growth Factor Delivery
Millions of people worldwide suffer from traumatic injuries or health conditions that cause damage to soft tissues including nerves, muscles, and blood vessels. The body can heal some of that damage, but more serious cases like the severing of a nerve or sustained oxygen deprivation can lead to permanent loss of movement or sensation in... -
Engineered Brain Organoids
The ability to derive and manipulate pluripotent stem cells has opened up new avenues for modeling biological systems in both healthy and diseased conditions. In order to more fully recapitulate the tissue microenvironment with its cell-cell, cell-extracellular matrix, and cell-niche interactions, it is essential to transition stem-cell culturing from monolayers to 3D structures. Self-organization of...
News 10
Multimedia 2
-
Video/AnimationAlginate Hydrogel for AngiogenesisThis video describes how an alginate hydrogel can be used to trigger the formation of new blood vessels at an ischemic site in the body. Credit: Wyss Institute at Harvard University.
-
Video/AnimationPrinting Vascular TissuePrinting vessel vasculature is essential for sustaining functional living tissues. Until now, bioengineers have had difficulty building thick tissues, lacking a method to embed vascular networks. A 3D bioprinting method invented at the Wyss Institute and Harvard SEAS embeds a grid of vasculature into thick tissue laden with human stem cells and connective matrix. Printed...