Search results
35 Results for 'Vaccines'
- Technologies (7)
- Team (0)
- News (22)
- Events (0)
- Multimedia (6)
- Publications (0)
- Jobs (0)
Technologies 7
-
Cellular “Backpacks” to Slow Tumor Growth
Macrophages are the body’s multipurpose defense agents, patrolling for pathogens and engulfing cellular debris, foreign substances, microbes, and even cancer cells. But cancerous tumors have evolved an insidious defense mechanism: they can switch arriving macrophages from an anti-cancer state to a pro-cancer state, in which they help promote the tumor’s growth. As a result, attempts... -
DNA Nanotechnology Tools – From Design to Applications
DNA nanostructures with their potential for cell and tissue permeability, biocompatibility, and high programmability at the nanoscale level are promising candidates as new types of drug delivery vehicles, highly specific diagnostic devices, and tools to decipher how biomolecules dynamically change their shapes, and interact with each other and with candidate drugs. Wyss Institute researchers are... -
OMNIVAX: Broadly Deployable Infection Vaccine Platform
Infectious diseases pose one of the greatest threats to public health, and vaccination campaigns with broad population coverage – arguably the most powerful strategy for preventing, controlling, and treating infectious diseases – have eradicated or significantly reduced the risk of contracting diseases such as smallpox, measles, polio, and tetanus. However, there is a constant need for... -
Bone Marrow-Like Scaffolds for Accelerating Immune Reconstitution
Bone marrow transplants containing hematopoietic stem cells from an immune-compatible (“allogeneic”) donor can cure patients with otherwise fatal blood disorders including multiple myeloma and leukemias by reconstituting their entire immune systems after chemotherapy. However, following such a “hematopoietic stem cell transplantation” (HSCT), the restoration of T cell immunity – which depends on the production of... -
eRNA: Controlled Enzymatic RNA Oligonucleotide Synthesis
Synthetic RNA oligonucleotides designed as specific successions of the four nucleobases A, U, G, and C that mimic naturally occurring RNA species are the key components of diverse RNA-based therapies. These include RNA therapeutics that can partially or completely turn off the expression of disease-causing genes (antisense and interfering RNAs), help replace or supplement dysfunctional... -
Cell-Free Biomolecule Manufacturing
Wyss Institute researchers have developed a biomolecular manufacturing method that can quickly and easily produce a wide range of vaccines, antimicrobial peptides and antibody conjugates while doing so anywhere, even in places without access to electrical power or refrigeration. The breakthrough could provide a life-saving workaround for making modern interventions available in remote areas. Today...
News 22
Multimedia 6
-
Video/AnimationOMNIVAX: Infection Vaccine PlatformThis video explains how OMNIVAX – an immuno-material-based vaccine technology can be used to rapidly create injectable vaccines against diverse viral and bacterial pathogens, and how the platform is used by the team to develop a vaccine against recurring urinary tract infections (UTIs) in their lead human application. Credit: Wyss Institute at Harvard University.
-
Video/AnimationBeating Back the CoronavirusWhen the coronavirus pandemic forced Harvard University to ramp down almost all on-site operations, members of the Wyss Institute community refocused their teams, and formed new ones, in order to fight COVID-19 on its multiple fronts. These efforts include building new pieces of personal protective equipment that were delivered to frontline healthcare workers, developing new...
-
Audio/PodcastDisruptive: Cancer Vaccine and Immuno-MaterialsImmunotherapy – treatment that uses the body’s own immune system to help fight disease – has groundbreaking and life-saving implications. In an effort to make immunotherapy more effective, Wyss Institute researchers are developing new immuno-materials, which help modulate immune cells to treat or diagnose disease. In this episode of Disruptive, Dave Mooney, Wyss Core Faculty...
-
Video/AnimationWyss Focus: Immuno-MaterialsWyss Core Faculty, Dave Mooney, explains our new Immuno-Materials Focus Area, which adds a new dimension to immunotherapy in that it harnesses materials to make treatments more efficient and effective. These material-based systems are capable of modulating immune cells and releasing them into the body where they can treat diseases.
-
Audio/PodcastDisruptive: Cancer Vaccine & Hydrogel Drug DeliveryIn this episode of Disruptive, Wyss Founding Core Faculty Member Dave Mooney discusses programmable nanomaterials approaches to fighting disease. Mooney explains how a cancer vaccine, developed by his team and currently in a clinical trial at the Dana-Farber Cancer Institute, can train one’s own immune system to target specific cancer cells. He also describes the...
-
Video/AnimationIntroduction to Implantable Cancer VaccineWhat if we could prevent and treat cancer with a simple vaccine? Credit: Wyss Institute at Harvard University