Multimedia search results
10 Results for ''
-
Audio/PodcastPreventing the Next Pandemic with Organ ChipsIn search for strategies to curb pandemics, scientists strive to understand how pathogens slip past the immune system and wreak havoc on the body. To achieve this goal, researchers study viral infection in models that mimic how different cell types interact with each other, the immune system, or the environment. Organ-on-a-chip models combine tissue engineering...
-
Video/AnimationeToehold: an RNA-detecting control element for use in RNA therapeutics, diagnostics and cell therapiesThis animation shows an example of an eToehold that detects and signals the presence of a specific viral RNA in a human cell. After the virus has injected its RNA into a host cell, the RNA acts as a “trigger RNA” by binding to a complementary sequence within the eToehold specifically engineered for its detection....
-
Video/AnimationInnovation Showcase – Wyss Institute: Wearable Technology with BiosensorsJay Sugarman talks with Peter Nguyen Ph.D., Luis Soenksen, Ph.D., and Nina Donghia–all of whom are associated with the Wyss Institute for Biologically Inspired Engineering at Harvard University. They’re on Innovation Showcase to inform viewers about the groundbreaking research they and their colleagues have been involved with related to the development of wearable technology as...
-
Video/AnimationmiSherlock – Detecting COVID-19 Variants from SalivaDespite increasing vaccination rates, new, more-infectious variants of SARS-CoV-2 could prolong the COVID-19 pandemic. Researchers at the Wyss Institute at Harvard University and MIT have created a low-cost, CRISPR-based diagnostic platform that can detect SARS-CoV-2 variants in a patient’s saliva without the need for any additional equipment. The team hopes their device will enable more...
-
Audio/PodcastTalking Biotech: COVID-19 Detection Masks and WearablesCOVID-19 is the spectrum of pathologies caused by the SARS-CoV2 virus. While the pandemic moves well into its second year, the importance of detection in populations cannot be overstated. However, testing methods typically include visiting testing centers, and it is hard to find a test that is both rapid and precise. Wyss Research Scientist Dr....
-
Video/AnimationBeating Back the Coronavirus – COVID-19 detecting face maskUsing freeze-dried cell free reactions and CRISPR-based biosensors, researchers at the Wyss Institute and M.I.T. have created a face mask that can detect the SARS-CoV-2 virus in a wearer’s breath in under 90 minutes. Such a mask would allow medical professionals to quickly identify COVID-19 patients and begin effective treatments. This facemask is a proof-of-concept...
-
Video/AnimationWearable Synthetic Biology – Clothing that can detect pathogens and toxinsWhat if we could create clothing that harnesses synthetic biology to detect the wearer’s exposure to toxins and pathogens? A team of researchers at the Wyss Institute and M.I.T. did just that byembedding freeze-dried, synthetic biology-based sensors into flexible materials and textiles. These sensors can detect pathogens such as the SARS-CoV-2 virus and toxins such...
-
Video/AnimationBeating Back the Coronavirus: FDA-Approved Drug Repurposing PipelineWith the goal of rapidly repurposing FDA-approved drugs to treat COVID-19, the Wyss Institute is collaborating with the Frieman Lab at the University of Maryland Medical School and the tenOever Lab at the Icahn School of Medicine at Mount Sinai to establish a multidisciplinary pipeline that can rapidly predict, test, and validate potential treatments. Credit:...
-
Video/AnimationHuman Organs-On-ChipsWyss Institute researchers and a multidisciplinary team of collaborators have engineered microchips that recapitulate the microarchitecture and functions of living human organs, including the lung, intestine, kidney, skin, bone marrow and blood-brain barrier. These microchips, called ‘organs-on-chips’, offer a potential alternative to traditional animal testing. Each individual organ-on-chip is composed of a clear flexible polymer...
-
Video/AnimationIntroduction to Organs-on-a-ChipWhat if we could test drugs without animal models? Wyss Institute researchers and a multidisciplinary team of collaborators have engineered microchips that recapitulate the microarchitecture and functions of living human organs, including the lung, intestine, kidney, skin, bone marrow and blood-brain barrier. These microchips, called ‘organs-on-chips’, offer a potential alternative to traditional animal testing. Each...