Multimedia
- Multimedia Type
- Focus Areas
- 3D Organ EngineeringHighly functional, multiscale, vascularized organ replacements that can be seamlessly integrated into the body
- Bioinspired TherapeuticsTherapeutic discovery and development enabled by microsystems engineering, molecular engineering, computational design, and organ-on-a-chip in vitro human experimentation technology
- Computational Design & DiscoveryCombining predictive bioanalytics and machine learning with physical and mathematical modeling and simulation
- Diagnostics for Human and Planetary HealthDeveloping new diagnostic technologies that solve important healthcare and environmental challenges
- Immuno-MaterialsMaterial-based systems capable of modulating immune cells ex vivo and in the human body to treat or diagnose disease
- Living Cellular DevicesRe-engineered living cells and biological circuits as programmable devices for medicine, manufacturing and sustainability
- Molecular RoboticsSelf-assembling molecules that can be programmed like robots to carry out specific tasks without requiring power
- Synthetic BiologyBreakthrough approaches to reading, writing, and editing nucleic acids and proteins for multiple applications, varying from healthcare to data storage
- Technology Areas
- 3D Printing
- Actuators
- Biomarker
- Building Materials
- Cell Therapy
- Diagnostics
- Disease Model
- DNA Nanostructures
- Drug Development
- Filtration & Separation
- Gene Circuits
- Imaging
- Immunotherapy
- Medical Devices
- Microbiome
- Microfabrication
- Microfluidics
- Microsystems
- Nanodevices
- Organs on Chips
- Robots
- Sensors
- Surface Coatings
- Therapeutics
- Vaccines
- Wearable Devices
- Disciplines
- Aging
- Architecture
- Biochemistry
- Bioinformatics
- Biotechnology
- Cell Biology
- Chemical Engineering
- Chemistry
- Computer Science
- Control
- Design
- Electrical Engineering
- Genetics
- Genome Engineering
- Immune Engineering
- Materials Science
- Mechanical Engineering
- Mechanobiology
- Medicine
- Microtechnology
- Nanobiotechnology
- Nanotechnology
- Pharmacology
- Physics
- Physiology
- Polymer Chemistry
- Regenerative Medicine
- Robotics
- Self Assembly
- Stem Cell Engineering
- Surgery
- Synthetic Biology
- Tissue Engineering
- Toxicology
- Application Areas
- Anti-aging
- Apparel
- Bacteria
- Balance & Motor Control
- Brain Disease
- Cancer
- Diabetes
- Drug Development
- Energy
- Fundamental Research
- Heart Disease
- Hemostasis
- Infectious Disease
- Inflammatory Diseases
- Intestinal Disease
- Kidney Disease
- Liver Disease
- Lung Disease
- Manufacturing
- Motor Control
- Personalized Medicine
- Rehabilitation
- Sepsis
- Stroke
- Sustainability
- Targeted Drug Delivery
- Toxicology
- Water
- Women's Health
299 Results for Video/Animation
-
Video/AnimationInterrogator: Human Organ-on-ChipsThis video describes the “Interrogator” instrument that can be programmed to culture up to 10 different Organ Chips and sequentially transfer fluids between their vascular channels to mimic normal human blood flow between the different organs of our body. Its integrated microscope enables the continuous monitoring of the tissues’ integrities in the individual organ chips...
-
Video/AnimationImpact Through Disruptive InnovationAt the Wyss Institute, we leverage insights into how Nature builds, controls and manufactures to develop disruptive technology solutions for healthcare and the environment. Our innovations make an impact in the world through commercialization by new startups and corporate alliances. Learn more about technology translation at the Wyss Institute. Credit: Wyss Institute at Harvard University
-
Video/AnimationAAV Capsid EngineeringWyss researchers have created a high-throughput platform to generate an Adeno-associated virus 2 (AAV2) library containing 200,000 variants, each carrying a distinct mutation in the virus capsid protein. Their analysis identified capsid changes that enhanced “homing” potential to specific organs in mice and virus viability, as well as a new protein hidden in the capsid-encoding...
-
Video/AnimationeRAPID: a Platform for Portable DiagnosticseRapid is an electrochemical sensing platform that uses a novel antifouling coating to enable low-cost, multiplexed detection of a wide range of biomolecules for diagnostics and other applications. Credit: Wyss Institute at Harvard
-
Video/AnimationDesign Talk | Wyss Institute SelectsThe beauty of natural forms and their underlying design principles provide living organisms with their incredible strength, resilience, and efficiency. Matilda McQuaid, Deputy Director of Curatorial and Head of Textiles leads a discussion with Don Ingber, founding director of the Wyss Institute for Biologically Inspired Engineering at Harvard University, and his co-faculty member Pamela Silver....
-
Video/AnimationVoxelated Soft Matter via Multimaterial, Multinozzle 3D PrintingMultimaterial Multinozzle 3D (MM3D) Printing, a new technique developed by engineers at the Wyss Institute and Harvard SEAS, allows seamless switching between up to eight different materials within a single nozzle, allowing for the creation of complex 3D objects in a fraction of the time required by other extrusion-based 3D printing methods. Credit: Wyss Institute...
-
Video/AnimationRapid Triage Test for Active Pulmonary TuberculosisThere’s a large unmet need for accurate, fast, and inexpensive diagnostics for active tuberculosis (ATB), which claims the lives over a million people per year. A team of researchers from the Wyss Institute for Biologically Inspired Engineering, The Broad Institute of Harvard and MIT, Brigham and Women’s Hospital (BWH), and several other collaborating institutions have...
-
Video/AnimationTEDMED: How wearable robots are transforming human mobilityAs a patient struggling to walk after a serious accident on the drive across the country to graduate school, Kathleen O’Donnell became acutely aware of the role mobility can play in quality of life. With this new insight, Kathleen focused her studies on prosthetics and assisted devices. In her own words, “As I became more...
-
Video/AnimationWyss Annual Symposium 2019 Next-Generation Diagnostics Open AnimationOpen Animation for the Wyss Annual Symposium 2019 Next-Generation Diagnostics Credit: Wyss Institute at Harvard University
-
Video/AnimationA Swifter Way Towards 3D-printed Organs20 people die waiting for an organ transplant every day in the US, but lab-grown organs so far lack the cellular density and functions required to make them viable replacements. The new SWIFT method from the Wyss Institute and Harvard SEAS solves those problems by 3D printing vascular channel networks directly into living tissue constructs,...
-
Video/AnimationSoft Robotic Gripper for JellyfishIn order to study jellyfish and other fragile marine life without damaging them, researchers at the Wyss Institute and Baruch College developed an ultra-soft gripper to gently grasp jellyfish and release them without harm. Credit: Wyss Institute at Harvard University
-
Video/AnimationLighting up proteins with Immuno-SABERThis animation explains how Immuno-SABER uses the Primer Exchange Reaction (PER) to enable the simultaneous visualization of multiple proteins in tissues in different applications. Credit: Wyss Institute at Harvard University.