Multimedia
- Multimedia Type
- Focus Areas
- 3D Organ EngineeringHighly functional, multiscale, vascularized organ replacements that can be seamlessly integrated into the body
- Bioinspired TherapeuticsTherapeutic discovery and development enabled by microsystems engineering, molecular engineering, computational design, and organ-on-a-chip in vitro human experimentation technology
- Computational Design & DiscoveryCombining predictive bioanalytics and machine learning with physical and mathematical modeling and simulation
- Diagnostics for Human and Planetary HealthDeveloping new diagnostic technologies that solve important healthcare and environmental challenges
- Immuno-MaterialsMaterial-based systems capable of modulating immune cells ex vivo and in the human body to treat or diagnose disease
- Living Cellular DevicesRe-engineered living cells and biological circuits as programmable devices for medicine, manufacturing and sustainability
- Molecular RoboticsSelf-assembling molecules that can be programmed like robots to carry out specific tasks without requiring power
- Synthetic BiologyBreakthrough approaches to reading, writing, and editing nucleic acids and proteins for multiple applications, varying from healthcare to data storage
- Technology Areas
- 3D Printing
- Actuators
- Biomarker
- Building Materials
- Cell Therapy
- Diagnostics
- Disease Model
- DNA Nanostructures
- Drug Development
- Filtration & Separation
- Gene Circuits
- Imaging
- Immunotherapy
- Medical Devices
- Microbiome
- Microfabrication
- Microfluidics
- Microsystems
- Nanodevices
- Organs on Chips
- Robots
- Sensors
- Surface Coatings
- Therapeutics
- Vaccines
- Wearable Devices
- Disciplines
- Aging
- Architecture
- Biochemistry
- Bioinformatics
- Biotechnology
- Cell Biology
- Chemical Engineering
- Chemistry
- Computer Science
- Control
- Design
- Electrical Engineering
- Genetics
- Genome Engineering
- Immune Engineering
- Materials Science
- Mechanical Engineering
- Mechanobiology
- Medicine
- Microtechnology
- Nanobiotechnology
- Nanotechnology
- Pharmacology
- Physics
- Physiology
- Polymer Chemistry
- Regenerative Medicine
- Robotics
- Self Assembly
- Stem Cell Engineering
- Surgery
- Synthetic Biology
- Tissue Engineering
- Toxicology
- Application Areas
- Anti-aging
- Apparel
- Bacteria
- Balance & Motor Control
- Brain Disease
- Cancer
- Diabetes
- Drug Development
- Energy
- Fundamental Research
- Heart Disease
- Hemostasis
- Infectious Disease
- Inflammatory Diseases
- Intestinal Disease
- Kidney Disease
- Liver Disease
- Lung Disease
- Manufacturing
- Motor Control
- Personalized Medicine
- Rehabilitation
- Sepsis
- Stroke
- Sustainability
- Targeted Drug Delivery
- Toxicology
- Water
- Women's Health
299 Results for Video/Animation
-
Video/AnimationKidney Organiods: Flow-Enhanced Vascularization and Maturation In VitroThis video explains how the collaborative project created vascularized kidney organoids and how they advance the field of tissue engineering. Credit: Wyss Institute at Harvard University.
-
Video/AnimationBill Meets BotsIn April 2018, Bill Gates visited several Harvard University robotics labs, including two of Wyss Institute Core Faculty members Rob Wood and Conor Walsh. While visiting Wood’s Harvard Microrobotics he learned about the RoboBee and soft grippers for deep sea exploration, and in the Walsh’s Harvard Biodesign Lab he learned about the soft wearable exosuit...
-
Video/AnimationHAMR-E: Inverted and Vertical Climbing MicrorobotHAMR-E, created in collaboration with Rolls-Royce, is a micro-robot that uses electroadhesion to scale vertical, inverted, and curved surfaces, allowing it to explore spaces that are too small for humans. HAMR-E could one day be used to inspect jet engines and other complicated machines without requiring them to be taken apart. Credit: Wyss Institute at...
-
Video/AnimationHow a Harvard Professor Makes Transforming Toys & DesignsHow a Harvard Professor Makes Transforming Toys and Designs was originally published by WIRED on November 29, 2018. This story features Associate Faculty member Chuck Hoberman. The original story can be found here.
-
Video/AnimationLight-driven fine chemical production in yeast biohybridsWyss Institute Core Faculty member Neel Joshi explains the concept of yeast biohybrids and how they can be used to harvest energy from light to drive the production of fine chemicals. Credit: Wyss Institute at Harvard University
-
Video/AnimationRobert Wood receives Max Planck-Humboldt MedalThis photomatic portrays Robert Wood and his team innovating (soft) robotics research with new approaches. Credit: Max Planck Society
-
Video/AnimationabbieSenseabbieSense is a Wyss technology that can detect histamine levels in human body fluids and determine the severity of an allergic reaction, which could help save the lives of patients with severe allergies. Credit: Wyss Institute at Harvard University
-
Video/AnimationScience Nation: Engineering soft robots for paradigm shift in rehabilitationThis video was produced by the National Science Foundation: Tim Gatautis suffered a spinal cord injury in a swimming accident nearly a decade ago and he’s had to use a wheelchair ever since. Gatautis would like to be able to do more for himself, which brings him to the Wyss Institute and the Biodesign Lab...
-
Video/AnimationSoft Robotic Arms: Giving Biologists a Delicate, Deep-sea ReachWhat good is a soft robotic hand without a soft robotic arm to move it? Wyss researchers have now created a soft, modular underwater arm that can help marine biologists study hard-to-reach organisms in the deep sea. Credit: Wyss Institute at Harvard University
-
Video/AnimationMulti-joint Personalized Soft Exosuit Breaks New GroundA multidisciplinary team at Harvard’s Wyss Institute and Harvard SEAS has developed a mobile multi-joint soft exosuit using an automatic tuning strategy that could reduce fatigue in soldiers, firefighters or other rescue workers. Credit: Wyss Institute at Harvard University
-
Video/AnimationAcoustophoretic PrintingHavard researchers have developed acoustophoretic printing, a method that uses 3D printing technology and highly localized sound waves to generate of droplets with defined sizes and a wide range of viscosities.
-
Video/AnimationNanofiber-Reinforced Micro-ActuatorsThis video explains how two fabrication techniques, soft lithography and rotary jet spinning of nanofibers, are combined to create a new type of micro-actuator for the manipulation of small fragile objects in challenging environments. Credit: Wyss Institute at Harvard University