Application Area: Hemostasis
30 Results for 'Hemostasis'
- Technologies (4)
- Collaborations (0)
- Team (0)
- News (19)
- Pages (0)
- Multimedia (7)
- Publications (0)
- Jobs (0)
- Events (0)
Technologies 4
-
NanoRx: Mechanically-Activated Drug Targeting
The Wyss team has developed a novel drug targeting nanotechnology that is activated locally by mechanical forces, either endogenous high shear stresses in blood created by vascular occlusion or mechanical energy applied locally using low-energy ultrasound radiation. Today, vascular blockage is the leading cause of death and disability in United States and Europe. Current therapies... -
Microfluidic Hemostasis Monitor
The body’s ability to stop bleeding, also known as hemostasis, is critical for survival. For patients with blood clotting disorders, medical conditions requiring the use of anticoagulation or antiplatelet drugs, or who require treatment with extracorporeal devices that circulate their blood outside of the body, it is essential that care providers can rapidly monitor their... -
Omniphobic material that empowers a new category of medical devices
Cerulean Scientific is using our thin layer perfluorocarbon technology to develop medical devices that resist clotting, obstruction and infection, reducing patient suffering and lowering healthcare costs for the 10% of the population treated with an implantable medical device. -
Human Organs-on-Chips
Organ Chips are microfluidic devices lined with living human cells for drug development, disease modeling, and personalized medicine. Launched in 2014, Wyss startup Emulate, Inc., is leveraging the Wyss Institute’s Organ Chip technology to mimic human organs in vitro, enabling faster, better, and cheaper drug development and insights into human health.
News 19
Multimedia 7
-
Audio/PodcastDisruptive: Sports GenomicsWith 100 trillion cells in the human body, bacteria outnumber our own human cells 2 to 1. These bacteria make up one’s microbiome, and particularly bacteria in our guts affect all our key organ functions. They play a role in our health, development and wellness, including endurance, recovery and mental aptitude. In this episode of...
-
Video/AnimationShear-Thinning Biomaterial: Catheter InjectionThis movie shows the solid state of the shear-thinning biomaterial immediately after release from the catheter into an aqueous solution (00:04). The STB is cohesive and remains as one solid piece throughout the injection process. There is no noticeable dissolution of the STB into the solution, suggesting it is stable immediately after being discharged from...
-
Audio/PodcastDisruptive: Mechanotherapeutics – From Drugs to WearablesMechanobiology reveals insights into how the body’s physical forces and mechanics impact development, physiological health, and prevention and treatment of disease. The emerging field of Mechanotherapeutics leverages these insights towards the development of new types of pharmaceuticals, drug delivery systems, engineered tissues, and wearable therapeutic devices that leverage physical forces or target mechanical signaling pathways...
-
Video/AnimationMechanotherapeutics: From Drugs to WearablesThe Wyss Institute’s 7th annual international symposium focused on advances in the field of Mechanobiology that have resulted in the development of new types of pharmaceuticals, drug delivery systems, engineered tissues, and wearable therapeutic devices that leverage physical forces or target mechanical signaling pathways as a core part of their mechanism of action. Organized by...
-
Video/AnimationBioinspired Blood Repellent CoatingIn this video, Wyss Institute Founding Director Don Ingber, Core Faculty member Joanna Aizenberg, Staff Scientist Dan Leslie and Postdoctoral Fellow Anna Waterhouse explain how a coating they developed using FDA-approved materials could prevent blood clotting in medical devices without the use of blood thinners. Credit: Wyss Institute at Harvard University
-
Video/AnimationNanoRx: Clot-Busting NanotherapeuticIn this animation, learn how the Wyss Institute clot-busting nanotherapeutic is activated by fluid high shear force – which occurs where blood flows through vessels narrowed by obstruction – to specifically target clots and dissolve them away. By pairing this drug with an intra-arterial device that restores blood flow to complete obstructions, the drug-device combination...