Application Area: Targeted Drug Delivery
147 Results for 'Targeted Drug Delivery'
- Technologies (13)
- Collaborations (1)
- Team (0)
- News (96)
- Pages (0)
- Multimedia (37)
- Publications (0)
- Jobs (0)
- Events (0)
Technologies 13
-
DNA Nanostructures for Drug Delivery
Researchers at the Wyss Institute have developed two methods for building arbitrarily shaped nanostructures using DNA, with a focus on translating the technology towards nanofabrication and drug delivery applications. One proprietary nanofabrication technique, called “DNA-brick self-assembly,” uses short, synthetic strands of DNA that work like interlocking Lego® bricks. It capitalizes on the ability to program... -
FeCILL: Targeted Treatment for Severe Fungal Infections
FeCILL is novel delivery vehicle for antifungal drugs that targets them right to the infection site and reduces harmful side effects in patients with severe fungal infections. -
Sustained Growth Factor Delivery for Regenerating Tissues
The Problem Millions of people worldwide suffer from traumatic injuries or health conditions that cause damage to soft tissues including nerves, muscles, and blood vessels. The body can heal some of that damage, but more serious cases like the severing of a nerve or sustained oxygen deprivation can lead to permanent loss of movement or... -
Single-Cell Encapsulation for Improved Cell Therapies
The Problem Mesenchymal stromal cells (MSCs) are valued for their ability to secrete compounds that modulate the body’s immune system, making them an attractive solution for existing problems with cell therapies including host-vs-graft disease and organ transplant rejections. However, MSCs are rapidly cleared from the body and can come under fire from the immune system.... -
SomaCode: Getting Cell Therapies Where They Need to Go
SomaCode is solving the problem of cell therapy delivery by identifying unique molecular “zip codes” for disease and engineering cells to home to those zip codes, making cell therapies safer and more effective. -
MRBL: Next-Generation Gene Therapy for Molecular Skin Rejuvenation
The next-generation gene therapy for molecular skin rejuvenation combines a comprehensive target gene prediction with a novel transdermal delivery approach for therapeutic adenovirus-associated viruses. The platform targets monogenic disease indications in the skin, and extends the same targets to the treatment of common skin aging conditions.
Collaborations 1
News 96
Multimedia 37
-
Video/AnimationGenetic & Cellular Engineering w/ David Schaffer & Samir Mitragotri – BIOS RoundtableSamir Mitragotri is a Core Faculty member at the Wyss Institute and the Hiller Professor of Bioengineering & Hansjorg Wyss Professor of Biologically Inspired Engineering at Harvard SEAS. David Schaffer is Professor at UC Berkeley & Director at BBH. The two discuss Genetic and Cellular Engineering, with a focus on delivery challenges.
-
Video/AnimationHow can we better treat brain diseases?The Brain Targeting Program at the Wyss Institute is a pre-competitive, multi-partner industry collaboration that aims to identify novel transport targets and shuttle compounds to enable more effective delivery of drugs to the brain. Credit: Wyss Institute at Harvard University
-
Video/AnimationFeCILL: Reimagining How We Treat the Sickest PatientsOpportunistic fungal infections usually only affect patients whose immune systems are compromised, but when they do, they are often deadly – the mortality rate for these infections can be as high as 25%. Existing antifungal treatments have high levels of toxicity, and can harm the patient more than they help. Researchers at the Wyss Institute...
-
Video/AnimationSomaCode: GPS for Cell TherapyJust like zip codes help drivers navigate to specific addresses using a GPS system, the molecular ‘zip codes’ identified via the SomaCode platform can be used to deliver cell therapies to their specific targets in the human body, increasing the therapies’ efficacy and reducing side effects. Credit: Wyss Institute at Harvard University
-
Video/AnimationJanus Tough Adhesives for Tendon RepairThere is a large unmet need for tendon regeneration therapies after injury. Building upon the tough gel adhesive technologies developed at the Wyss Institute at Harvard University and the Harvard School of Engineering and Applied Sciences, researchers from these institutions collaborated with a group at Novartis to create the Janus Tough Adhesives (JTAs). This two-sided...
-
Video/AnimationeToehold: an RNA-detecting control element for use in RNA therapeutics, diagnostics and cell therapiesThis animation shows an example of an eToehold that detects and signals the presence of a specific viral RNA in a human cell. After the virus has injected its RNA into a host cell, the RNA acts as a “trigger RNA” by binding to a complementary sequence within the eToehold specifically engineered for its detection....