Multimedia search results
23 Results for ''
-
Video/AnimationcSNAP: Reimagining CoolingWe are reimagining air-conditioners to meet increasing global cooling demand while combatting climate change. Our novel evaporative cooling technology, cSNAP, uses advanced materials science and design to make affordable, environmentally-positive eco-friendly air conditioners that work in most climates without the use of synthetic refrigerants. Credit: Wyss Institute at Harvard University
-
Video/AnimationOrigami OrgansA multidisciplinary team of scientists, engineers, and architectural designers are developing Origami Organs that could function like artificial kidneys. Credit: Wyss Institute at Harvard University
-
Video/AnimationRomu: A Robot for Environmental ProtectionResearchers at the Wyss Institute have developed a robot designed to drive interlocking sheet piles into the ground to help stabilize soil. Teams of such robots could help combat erosion, restore damaged landscapes, and facilitate sustainable land management in a variety of settings. Credit: Wyss Institute at Harvard
-
Video/AnimationHow a Harvard Professor Makes Transforming Toys & DesignsHow a Harvard Professor Makes Transforming Toys and Designs was originally published by WIRED on November 29, 2018. This story features Associate Faculty member Chuck Hoberman. The original story can be found here.
-
Video/AnimationReconfigurable MaterialsThis video shows how a reconfigurable model structure generated with the teams predictive method can be drawn into different shapes that might perform very different functions. Credit: Harvard School of Engineering and Applied Sciences.
-
Video/AnimationBioprinting: The Kidney’s Proximal TubulesIn this video, see how the Wyss Institute team has advanced bioprinting to the point of being able to fabricate a functional subunit of a kidney. Credit: Wyss Institute at Harvard University
-
Video/AnimationPopup Challenge: Help Revolutionize Popup RoboticsJoin the Wyss Institute Popup Challenge, a design contest based around the laminate design techniques outlined at popupcad.org. We hope to grow the community of people who can design, build, and operate laminate devices and micromechanisms. If you are a student considering using popups for a class project, a researcher who has an application for...
-
Video/AnimationFluid GateIn this video, the fluid-based gating mechanism separates gas and water. The fluid-filled pores system leverages pressurization to control the opening and closing of its liquid gates, making it extremely precise at separating mixed materials. Credit: Wyss Institute at Harvard University
-
Video/AnimationKilobots: A Thousand-Robot SwarmIn this video, Kilobots self-assemble in a thousand-robot swarm. The algorithm developed by Wyss Institute Core Faculty member Radhika Nagpal that enables the swarm provides a valuable platform for testing future collective Artificial Intelligence (AI) algorithms. Credit: Harvard School of Engineering and Applied Sciences.
-
Video/AnimationDynamic Daylight Redirection SystemThis video shows Keojin Jin conducting a shoebox test that shows the light reflection effect to the top surface of the box as well as the reduction of direct light to the bottom surface of the box. Credit: Wyss Institute at Harvard University
-
Video/AnimationSelf-Folding RobotsIn this video, Wyss Institute Core Faculty member Rob Wood, who is also the Charles River Professor of Engineering and Applied Sciences at Harvard’s School of Engineering and Applied Sciences (SEAS), and SEAS Ph.D. student Sam Felton discuss their landmark achievement in robotics – getting a robot to assemble itself and walk away autonomously –...
-
Video/Animation3D Printing: Cellular CompositesMaterials scientists at Harvard University have created lightweight cellular composites via 3D printing. These fiber-reinforced epoxy composites mimic the structure and performance of balsa wood. Because the fiber fillers align along the printing direction, their local orientation can be exquisitely controlled. These 3D composites may be useful for wind turbine, automotive and aerospace applications, where...
-
Video/AnimationDNA CagesTo create supersharp images of their cage-shaped DNA polyhedra, the scientists used DNA-PAINT, a microscopy method that uses short strands of DNA (yellow) labeled with a fluorescent chemical (green) to bind and release partner strands on polyhedra corners, causing them to blink. The blinking corners reveal the shape of structures far too small to be...
-
Video/AnimationSustainability: The Ultimate ChallengeIn the past century plastic has transformed modern-day life on our planet, but is it sustainable? We produce 300 million tons of plastic per year* and recycle only 3%**. Are we content that the other 97% collects in oceans, landfills and the food chain? The challenge is clear: we will drown in plastic if we...
-
Video/AnimationChitosan BioplasticIn this video, the team grew a California Blackeye pea plant in soil enriched with its chitosan bioplastic over a three-week period – demonstrating the material’s potential to encourage plant growth once it is returned to the environment. Credit: Wyss Institute at Harvard University
-
Video/AnimationTERMESInspired by termites, the TERMES robots act independently but collectively. They can carry bricks, build staircases, and then climb them to add bricks to a structure. Credit: Wyss Institute at Harvard University
-
Video/AnimationBioprinting: Building in Blood VesselsBuilding in blood vessels. Then they addressed a big challenge in tissue engineering: embedding 3D vascular networks. They developed a ‘fugitive’ ink that can easily be printed, then suctioned off to create open microchannels that can then be populated with blood-vessel-lining cells to allow blood to flow. Read more: wyss.harvard.edu/viewpressrelease/141 Credit: Wyss Institute at Harvard...
-
Video/AnimationBioprinting: Building with Bio-InksBuilding with bio-inks. Using their custom-built printer, the fugitive ink for the vasculature, and other biological inks containing extracellular matrix and human cells, the researchers printed a 3D tissue construct. Credit: Wyss Institute at Harvard University
-
Video/AnimationBioprinting: Building Intricate StructuresBuilding intricate structures. The team first designed a custom printer that can precisely co-print multiple materials in 3D to create intricate heterogeneous patterns. Credit: Wyss Institute at Harvard University
-
Video/AnimationNew coating turns glass into superglassA transparent new coating makes ordinary glass tough, ultraslippery, and self-cleaning. The coating is based on SLIPS — the world’s slipperiest synthetic substance. Here, a droplet of dyed octane quickly beads up and rolls off a watch glass with the new coating. To learn more, go to Credit: Wyss Institute at Harvard University
-
Video/AnimationSLIPS‘SLIPS’ technology, inspired by the slippery pitcher plant that repels almost every type of liquid and solid, is a unique approach to coating industrial and medical surfaces that is based on nano/microstructured porous material infused with a lubricating fluid. By locking in water and other fluids, SLIPS technology creates slick, exceptionally repellent and robust self-cleaning...
-
Video/AnimationTermite-inspired robotsInspired by termites and their building activities, the TERMES project is working toward developing a swarm construction system in which robots cooperate to build 3D structures much larger than themselves. The current system consists of simple but autonomous mobile robots and specialized passive blocks; the robot is able to manipulate blocks to build tall structures,...
-
Video/AnimationSLIPS: Keeping Ice AwayWhat if we could design surfaces that prevent ice formation? ‘SLIPS’ technology, inspired by the slippery pitcher plant that repels almost every type of liquid and solid, is a unique approach to coating industrial and medical surfaces that is based on nano/microstructured porous material infused with a lubricating fluid. By locking in water and other...