Discipline: Nanotechnology
112 Results for 'Nanotechnology'
- Technologies (9)
- Collaborations (0)
- Team (0)
- News (80)
- Pages (0)
- Multimedia (23)
- Publications (0)
- Jobs (0)
- Events (0)
Technologies 9
-
DNA Nanoswitch Calipers for Single-Molecule Proteomics
DNA nanoswitch calipers are a first-of-their-kind research tool that leverage DNA’s unique molecular qualities to study post-translational modifications on proteins to unlock a new frontier of medicine. -
Paper-Based Diagnostics
With the imminent threat of new pandemics and frequent disease outbreaks exemplified by the recent Ebola and Zika epidemics, there is a growing need for low-cost, easily deployable and simple-to-use diagnostic tools. The Wyss Institute has developed paper-based synthetic gene networks as a next generation diagnostic technology for use in global healthcare crises and patient... -
Cellular “Backpacks” to Fight Cancer, Autoimmune Disorders, and More
Macrophages are very malleable immune cells, but that also means that they can be influenced by cancerous tumors and inflammatory processes. Our cellular "backpacks" stick to macrophages and can deliver molecules that keep them in their desired state for cell therapy and more. -
Catalytic Materials: Cheaper, Better Air Purification for a Healthier World
Our catalytic materials are inspired by the nanostructure of butterfly wings and enable affordable air purification for a variety of applications. -
DNA Nanostructures for Drug Delivery
Researchers at the Wyss Institute have developed two methods for building arbitrarily shaped nanostructures using DNA, with a focus on translating the technology towards nanofabrication and drug delivery applications. One proprietary nanofabrication technique, called “DNA-brick self-assembly,” uses short, synthetic strands of DNA that work like interlocking Lego® bricks. It capitalizes on the ability to program... -
Sugar-to-Fiber Enzyme for Healthier Food
In collaboration with Kraft Heinz, our sugar-to-fiber product can convert sugar in food products into prebiotic fiber in the human gut, reducing the amount of sugar absorbed into the bloodstream without altering the amount of sugar in existing food product recipes.
News 80
Multimedia 23
-
Video/AnimationDoriNano – Improved DNA Origami Nanodelivery to Fight Cancer and Other DiseasesWe’re developing DNA Origami nanodelivery, which is transforming nanoparticle industry. Developed at the Dana Farber Cancer Institute and the Wyss Institute at Harvard University, this innovative approach overcomes the challenges of other nanoparticles, offering stability, high drug loading capacity, nano-scale control of cargo spacing, and more – making it a highly customizable solution for delivering...
-
Video/AnimationDeep-dive Molecular Blueprinting of Therapeutic Nanostructures | Anastasia ErshovaAnastasia Ershova, a scientist at the Wyss, introduces the innovative field of bionanotechnology. In this talk from LabWeek Field Building, she explores how this cutting-edge science is revolutionizing therapeutics and diagnostics by building molecules that interact with the body in novel ways. Ershova discusses DNA nanotechnology, where DNA is used as a material to create...
-
Audio/PodcastMaking Sugar Healthier – DDN DialoguesWith some out-of-the-box engineering, researchers have developed a nature-inspired strategy to turn sugar in packaged foods into gut-healthy fiber. This podcast features Director of Business Development, Sam Inverso, Ph.D., and Senior Engineer Adama Sesay, Ph.D., along with Judith Moca and John Topinka from Kraft-Heinz. This episode was created and is owned by Drug Discovery News,...
-
Video/Animation2021 Kabiller Prize in Nanoscience and NanomedicineDavid R. Walt, a Wyss Core Faculty member, member of the faculty at Harvard Medical School in the Department of Pathology, and a Howard Hughes Medical Institute Professor, is the winner of the 2021 Kabiller Prize in Nanoscience and Nanomedicine, the world’s largest monetary award for outstanding achievement in the field of nanotechnology and its...
-
Video/AnimationDNA Nanoswitch CalipersThe world’s tiniest ruler for biomolecules has been created by researchers at the Wyss Institute at Harvard University, Harvard Medical School, and Boston Children’s Hospital. DNA Nanoswitch Calipers can measure very small peptides to better understand their structure and function, and enable them to be quickly identified in mixed samples. These insights could lead to...
-
Video/AnimationLiving MaterialsCan we create a world of living materials that have the characteristics of biological systems: self-replication, self-regulation, self-healing, environmental responsiveness and self-sustainability? Engineered Living Materials (ELMs) are defined as engineered materials composed of living cells that form or assemble the material itself or modulate the functional performance of the material in some manner. The proposed Big...