Technologies search results
9 Results for ''
-
DNA Nanotechnology Tools – From Design to Applications
DNA nanostructures with their potential for cell and tissue permeability, biocompatibility, and high programmability at the nanoscale level are promising candidates as new types of drug delivery vehicles, highly specific diagnostic devices, and tools to decipher how biomolecules dynamically change their shapes, and interact with each other and with candidate drugs. Wyss Institute researchers are... -
Bone Marrow-Like Scaffolds for Accelerating Immune Reconstitution
Bone marrow transplants containing hematopoietic stem cells from an immune-compatible (“allogeneic”) donor can cure patients with otherwise fatal blood disorders including multiple myeloma and leukemias by reconstituting their entire immune systems after chemotherapy. However, following such a “hematopoietic stem cell transplantation” (HSCT), the restoration of T cell immunity – which depends on the production of... -
milliDelta: Millimeter-Scale Delta Robot
Delta robots are deployed in many industrial processes, including pick-and-place assemblies, machining, welding, and food packaging. Three individually controlled lightweight arms enable fast and accurate motion of an output platform in three directions. Roboticists have reduced the size of Delta robots for tasks in limited workspaces, but so far, using conventional manufacturing techniques and components,... -
HAMR: Versatile Crawling Microrobot
Small or difficult-to-access spaces such as areas covered with rubble, or narrow pipes and engines can pose obstacles to search-and-rescue missions, repair works, or environmental and industrial monitoring. One solution for these problems could be small-sized robots that are able to navigate such spaces, transport payload, sense, and communicate. Wyss Institute researchers have developed a... -
DNA Nanostructures for Drug Delivery
Researchers at the Wyss Institute have developed two methods for building arbitrarily shaped nanostructures using DNA, with a focus on translating the technology towards nanofabrication and drug delivery applications. One proprietary nanofabrication technique, called “DNA-brick self-assembly,” uses short, synthetic strands of DNA that work like interlocking Lego® bricks. It capitalizes on the ability to program... -
BIND: Engineered Biofilms
A team at the Wyss Institute sees biofilms as a robust new platform for designer nanomaterials that could treat inflammatory bowel diseases, clean up polluted rivers, manufacture pharmaceutical products, fabricate new textiles, and more. A novel protein engineering system called BIND, which stands for Biofilm-Integrated Nanofiber Display, could be the essential ingredient in tomorrow’s probiotic... -
Programmable Robot Swarms
Collective behaviors enable animals like ants to achieve remarkable, colony-level feats through the distributed actions of millions of independent agents. These collective behaviors are inspiring engineers at the Wyss Institute to build simple mobile robots that harness the demonstrated power of the swarm, performing collective tasks like transporting large objects or autonomously building human-scale structures.... -
Pop-Up MEMS: Origami-Inspired Micromanufacturing
Recent decades have seen rapid development in the manufacture of microelectromechanical systems (MEMS) at the micrometer scale, mostly based on silicon wafer processing techniques, with characteristic length scales of millimeters to nanometers. However, standard MEMS techniques are often inappropriate for producing machines with complex 3D topologies and varied constituent materials at the mesoscale, at sizes... -
4D Printing of Shapeshifting Devices
Organisms, such as flowers and plants, have tissue compositions and microstructures creating dynamic morphologies that can shapeshift in response to changes in their environments. Researchers at the Wyss Institute have mimicked a variety of such dynamic shape changes like those performed by tendrils, leaves, and flowers in response to changes in humidity or temperature with...