Focus Area: 3D Organ Engineering
74 Results for '3D Organ Engineering'
- Technologies (6)
- Team (0)
- News (46)
- Events (0)
- Multimedia (22)
- Publications (0)
- Jobs (0)
Technologies 6
-
PhonoGraft: 3D Printed Tympanic Membrane Graft
Perforations of the tympanic membrane or “eardrum,” the thin membrane that conducts sound in the ear, can result in severe hearing loss and recurring infections. Worldwide, tympanic membrane perforations occur in about 30 million people, with about four million people in North America and the European Union alone, due to blast and other traumatic injuries,... -
MM3D: Multimaterial Multinozzle 3D Printing
3D printers are revolutionizing manufacturing by allowing users to create any physical shape they can imagine on-demand. However, most extrusion-based printers available commercially are only able to build objects from a single nozzle at a time. Those that can deposit multiple inks are even slower due to the additional time required to switch between materials.... -
Engineered Brain Organoids
The ability to derive and manipulate pluripotent stem cells has opened up new avenues for modeling biological systems in both healthy and diseased conditions. In order to more fully recapitulate the tissue microenvironment with its cell-cell, cell-extracellular matrix, and cell-niche interactions, it is essential to transition stem-cell culturing from monolayers to 3D structures. Self-organization of... -
Human Organs-on-Chips
Clinical studies take years to complete and testing a single compound can cost more than $2 billion. Meanwhile, innumerable animal lives are lost, and the process often fails to predict human responses because traditional animal models often do not accurately mimic human pathophysiology. For these reasons, there is a broad need for alternative ways to... -
JetValve for Heart Regeneration
The human heart beats approximately 35 million times every year, pumping blood into the circulation via four different heart valves. In more than four million people each year, heart valves fail for different reasons, including birth defects, age-related deteriorations and infections. At present, clinicians use either artificial prostheses or fixed animal and cadaver-sourced tissue to... -
3D Bioprinting of Living Tissues
Progress in drug testing and regenerative medicine could greatly benefit from laboratory-engineered human tissues built of a variety of cell types with precise 3D architecture. But production of greater than millimeter sized human tissues has been limited by a lack of methods for building tissues with embedded life-sustaining vascular networks. In this video, the Wyss...
News 46
Multimedia 22
-
Video/AnimationPhonoGraft: Programming the eardrum to repair itselfEardrum perforations are a widespread problem affecting millions worldwide. Current standard of care is invasive, involves harvesting an autologous tissue to patch the eardrum, and often requires to revision surgeries, while hearing outcomes remain unsatisfying. What if we could program the eardrum to repair itself after injury? Researchers at the Wyss Institute, Massachusetts Eye and...
-
Video/AnimationVoxelated Soft Matter via Multimaterial, Multinozzle 3D PrintingMultimaterial Multinozzle 3D (MM3D) Printing, a new technique developed by engineers at the Wyss Institute and Harvard SEAS, allows seamless switching between up to eight different materials within a single nozzle, allowing for the creation of complex 3D objects in a fraction of the time required by other extrusion-based 3D printing methods. Credit: Wyss Institute...
-
Audio/PodcastDisruptive: 3D BioprintingThere are roughly 120,000 people in the United States on waiting lists for live-saving organ transplants, with only about 30,000 transplants happening every year. To address this great challenge of organ shortages, a team at the Wyss Institute led by Core Faculty member Jennifer Lewis, Sc.D., is developing a method for 3D bioprinting organ tissues...
-
Video/AnimationA Swifter Way Towards 3D-printed Organs20 people die waiting for an organ transplant every day in the US, but lab-grown organs so far lack the cellular density and functions required to make them viable replacements. The new SWIFT method from the Wyss Institute and Harvard SEAS solves those problems by 3D printing vascular channel networks directly into living tissue constructs,...
-
Video/AnimationKidney Organiods: Flow-Enhanced Vascularization and Maturation In VitroThis video explains how the collaborative project created vascularized kidney organoids and how they advance the field of tissue engineering. Credit: Wyss Institute at Harvard University.
-
Video/AnimationAcoustophoretic PrintingHavard researchers have developed acoustophoretic printing, a method that uses 3D printing technology and highly localized sound waves to generate of droplets with defined sizes and a wide range of viscosities.