Search results
76 Results for '3D Printing'
- Technologies (6)
- Team (0)
- News (44)
- Events (0)
- Multimedia (26)
- Publications (0)
- Jobs (0)
Technologies 6
-
MM3D: Multimaterial Multinozzle 3D Printing
3D printers are revolutionizing manufacturing by allowing users to create any physical shape they can imagine on-demand. However, most extrusion-based printers available commercially are only able to build objects from a single nozzle at a time. Those that can deposit multiple inks are even slower due to the additional time required to switch between materials.... -
cold-SNAP: Eco-Friendly Air Conditioning
As average global temperatures steadily climb, the worldwide demand for air conditioning is expected to triple by 2050. Conventional air conditioners, while now cheap to manufacture, still rely on low-efficiency mechanical vapor compression to cool and dehumidify air, making them one of the largest consumers of energy in industrialized countries. An alternative cooling method called... -
Liquid-Infused Tympanostomy Tubes
Acute middle ear infections affect more than 700 million people each year, with children often experiencing the most recurrent and severe symptoms due to their underdeveloped physiology. By the age of three, 25-40 % of children have had at least three episodes of acute middle ear infection, which is commonly accompanied by excess fluids accumulating... -
Human Organs-on-Chips
Clinical studies take years to complete and testing a single compound can cost more than $2 billion. Meanwhile, innumerable animal lives are lost, and the process often fails to predict human responses because traditional animal models often do not accurately mimic human pathophysiology. For these reasons, there is a broad need for alternative ways to... -
4D Printing of Shapeshifting Devices
Organisms, such as flowers and plants, have tissue compositions and microstructures creating dynamic morphologies that can shapeshift in response to changes in their environments. Researchers at the Wyss Institute have mimicked a variety of such dynamic shape changes like those performed by tendrils, leaves, and flowers in response to changes in humidity or temperature with... -
3D Bioprinting of Living Tissues
Progress in drug testing and regenerative medicine could greatly benefit from laboratory-engineered human tissues built of a variety of cell types with precise 3D architecture. But production of greater than millimeter sized human tissues has been limited by a lack of methods for building tissues with embedded life-sustaining vascular networks. In this video, the Wyss...
News 44
Multimedia 26
-
Video/AnimationVoxelated Soft Matter via Multimaterial, Multinozzle 3D PrintingMultimaterial Multinozzle 3D (MM3D) Printing, a new technique developed by engineers at the Wyss Institute and Harvard SEAS, allows seamless switching between up to eight different materials within a single nozzle, allowing for the creation of complex 3D objects in a fraction of the time required by other extrusion-based 3D printing methods. Credit: Wyss Institute...
-
Audio/PodcastDisruptive: 3D BioprintingThere are roughly 120,000 people in the United States on waiting lists for live-saving organ transplants, with only about 30,000 transplants happening every year. To address this great challenge of organ shortages, a team at the Wyss Institute led by Core Faculty member Jennifer Lewis, Sc.D., is developing a method for 3D bioprinting organ tissues...
-
Video/AnimationA Swifter Way Towards 3D-printed Organs20 people die waiting for an organ transplant every day in the US, but lab-grown organs so far lack the cellular density and functions required to make them viable replacements. The new SWIFT method from the Wyss Institute and Harvard SEAS solves those problems by 3D printing vascular channel networks directly into living tissue constructs,...
-
Video/AnimationLiquid-Infused Tympanostomy TubesResearchers at the Wyss Institute have developed next-generation tympanostomy tubes with an innovative material design that significantly reduces biofouling, implant size, need for revision surgeries, and promotes drug delivery into the middle ear. Credit: Wyss Institute at Harvard University
-
Video/AnimationKidney Organiods: Flow-Enhanced Vascularization and Maturation In VitroThis video explains how the collaborative project created vascularized kidney organoids and how they advance the field of tissue engineering. Credit: Wyss Institute at Harvard University.
-
Audio/PodcastDisruptive: Soft Robotics for Deep Sea ExplorationThe deep ocean is the least explored environment on Earth, and scientists estimate that many thousands of species are yet to be encountered. Marine researchers depend on tools primarily developed for the military or the oil and gas industry to study and capture undersea organisms. Many of them are extremely fragile, some thousands of years...