Search results
133 Results for 'Building Materials'
- Technologies (9)
- Collaborations (0)
- Team (0)
- News (99)
- Pages (0)
- Multimedia (25)
- Publications (0)
- Jobs (0)
- Events (0)
Technologies 9
-
DNA Nanostructures for Drug Delivery
Researchers at the Wyss Institute have developed two methods for building arbitrarily shaped nanostructures using DNA, with a focus on translating the technology towards nanofabrication and drug delivery applications. One proprietary nanofabrication technique, called “DNA-brick self-assembly,” uses short, synthetic strands of DNA that work like interlocking Lego® bricks. It capitalizes on the ability to program... -
cSNAP: Eco-Friendly Air Conditioning
Our eco-friendly air conditioning technology is a low-carbon-footprint evaporative cooling system that reduces indoor air temperature without adding humidity. -
Origami-Inspired Radiant Cooling for Improved Thermal Health
Origami-inspired Radiant Cooling devices for a broad range of building interiors use microfluidic water-circuits and foldable designs that increase their surface area to achieve more effective cooling. -
Circe: Transforming greenhouse gases into valuable products with microbes
Circe Bioscience is using gas fermentation to produce valuable materials including fats, oils, and fuels from greenhouse gases using engineered microbes. -
Dynamic Daylight Control System
In the U.S. alone, commercial and residential buildings account for more than 40 percent of the total energy consumption – mostly for lighting. What’s more, the deep building layouts that are typical in the U.S. have led to a complete reliance on artificial lighting systems that are less desirable than natural daylight. Many of the... -
Liquid-Gated Membranes for Filtration
Just like pores in living organisms that control the absorption and excretion of fluids, gases and solids in response to their environments, flow-gating membranes have proved very useful for many mechanical systems, such as gas and liquid separators, dialysis machines, or open heart bypass pumps. But conventional approaches to create synthetic “gated pores” within those...
News 99
Multimedia 25
-
Video/AnimationSeed-dependent crisscross DNA-origami slatsThis animation explains how the newly invented crisscross origami method can be used to build functionalized micron-scale DNA megastructures composed of many unique DNA origami “slats,” each with their own complexity and interactive properties. Credit: Wyss Institute at Harvard University
-
Video/AnimationcSNAP: Reimagining CoolingWe are reimagining air-conditioners to meet increasing global cooling demand while combatting climate change. Our novel evaporative cooling technology, cSNAP, uses advanced materials science and design to make affordable, environmentally-positive eco-friendly air conditioners that work in most climates without the use of synthetic refrigerants. Credit: Wyss Institute at Harvard University
-
Video/AnimationSoft Exosuit for Post-stroke Gait Re-trainingThis video explains how exosuit technology, developed at the Wyss Institute for Biologically Inspired Engineering, applied to ankle movements helps patients post-stroke regain a more normal gait. Credit: Wyss Institute at Harvard University
-
Audio/PodcastBiofilms: Reprogramming Bacteria to Improve LivesWyss Core Faculty member Neel Joshi and Postdoctoral Fellow Anna Duraj-Thatte discuss the intersection between synthetic biology and materials science as an underexplored area with great potential to positively affect our daily lives—applications ranging from manufacturing to medicine. Dr. Joshi outlines ways that his lab at the Wyss Institute is looking at reprogramming bacteria in...
-
Video/AnimationHow plant stems grow into different shapesIt is well known that as plants grow, their stems and shoots respond to outside signals like light and gravity. But if plants all have similar stimuli, why are there so many different plant shapes? Using simple mathematical ideas, Harvard University researchers constructed a framework that explains and quantifies the different shapes of plant stems....
-
Video/Animation3D Printing Ceramic FoamThis video shows the 3D printing process that adds layer upon layer of the foam link to create a 3D porous ceramic honeycomb pattern. This new capability is an important step toward generating porous materials for lightweight structures, thermal insulation, tissue scaffolds and other applications. Credit: Lori Sanders