Multimedia search results
25 Results for ''
-
Video/AnimationSeed-dependent crisscross DNA-origami slatsThis animation explains how the newly invented crisscross origami method can be used to build functionalized micron-scale DNA megastructures composed of many unique DNA origami “slats,” each with their own complexity and interactive properties. Credit: Wyss Institute at Harvard University
-
Video/AnimationcSNAP: Reimagining CoolingWe are reimagining air-conditioners to meet increasing global cooling demand while combatting climate change. Our novel evaporative cooling technology, cSNAP, uses advanced materials science and design to make affordable, environmentally-positive eco-friendly air conditioners that work in most climates without the use of synthetic refrigerants. Credit: Wyss Institute at Harvard University
-
Video/AnimationSoft Exosuit for Post-stroke Gait Re-trainingThis video explains how exosuit technology, developed at the Wyss Institute for Biologically Inspired Engineering, applied to ankle movements helps patients post-stroke regain a more normal gait. Credit: Wyss Institute at Harvard University
-
Audio/PodcastBiofilms: Reprogramming Bacteria to Improve LivesWyss Core Faculty member Neel Joshi and Postdoctoral Fellow Anna Duraj-Thatte discuss the intersection between synthetic biology and materials science as an underexplored area with great potential to positively affect our daily lives—applications ranging from manufacturing to medicine. Dr. Joshi outlines ways that his lab at the Wyss Institute is looking at reprogramming bacteria in...
-
Video/AnimationHow plant stems grow into different shapesIt is well known that as plants grow, their stems and shoots respond to outside signals like light and gravity. But if plants all have similar stimuli, why are there so many different plant shapes? Using simple mathematical ideas, Harvard University researchers constructed a framework that explains and quantifies the different shapes of plant stems....
-
Video/Animation3D Printing Ceramic FoamThis video shows the 3D printing process that adds layer upon layer of the foam link to create a 3D porous ceramic honeycomb pattern. This new capability is an important step toward generating porous materials for lightweight structures, thermal insulation, tissue scaffolds and other applications. Credit: Lori Sanders
-
Video/AnimationReconfigurable MaterialsThis video shows how a reconfigurable model structure generated with the teams predictive method can be drawn into different shapes that might perform very different functions. Credit: Harvard School of Engineering and Applied Sciences.
-
Video/AnimationBioprinting: The Kidney’s Proximal TubulesIn this video, see how the Wyss Institute team has advanced bioprinting to the point of being able to fabricate a functional subunit of a kidney. Credit: Wyss Institute at Harvard University
-
Audio/PodcastDisruptive: Putting Biofilms to WorkBiofilms are commonly known as the slime-producing bacterial communities sitting on stones in streams, dirty pipes and drains, or dental plaque. However, Wyss Core Faculty member Neel Joshi is putting to work the very properties that make biofilms effective nuisances or threats in our daily lives. In this episode of Disruptive, Joshi and postdoctoral fellow...
-
Video/AnimationEfficient Recovery of Stem Cell SheetsSee in this video how an intact sheet of mesenchymal stem cells, stained with a violet dye, can be lifted off the infused polymer substrate in the culture dish using a filter paper and transferred to a new surface. Credit: Wyss Institute at Harvard University
-
Video/Animation3D Printing Metal in MidairIn this video, see the laser-assisted method developed by Wyss Core Faculty member Jennifer Lewis that allows metal to be 3D printed in midair. Credit: Lewis Lab / Wyss Institute at Harvard University
-
Video/AnimationSoft Robotic Grippers For Deep-Sea ExplorationIn this video, two types of soft robotic grippers are shown successfully collecting coral samples at the bottom of the Red Sea. The first gripper features opposing pairs of bending actuators, while the second gripper – inspired by the coiling action of a boa constrictor – can access tight spaces and clutch small and irregular...
-
Video/Animation3D Printed Soft Jumping RobotUsing a multi-material 3D printer for manufacturing allowed Wyss Institute researchers to fabricate the jumping robot in one uninterrupted job, seamlessly transitioning from rigid core components to a soft exterior in a single print session. It’s first ever robot to be 3D printed with layers of material gradients, making it extremely durable and giving the...
-
Video/AnimationFluid GateIn this video, the fluid-based gating mechanism separates gas and water. The fluid-filled pores system leverages pressurization to control the opening and closing of its liquid gates, making it extremely precise at separating mixed materials. Credit: Wyss Institute at Harvard University
-
Video/AnimationBioinspired Blood Repellent CoatingIn this video, Wyss Institute Founding Director Don Ingber, Core Faculty member Joanna Aizenberg, Staff Scientist Dan Leslie and Postdoctoral Fellow Anna Waterhouse explain how a coating they developed using FDA-approved materials could prevent blood clotting in medical devices without the use of blood thinners. Credit: Wyss Institute at Harvard University
-
Video/AnimationBIND BiofilmIn this video Wyss Institute Core Faculty member Neel Joshi and Postdoctoral Fellow Peter Nguyen describe how their protein engineering system called BIND (Biofilm-Integrated Nanofiber Display) could be used to redefine biofilms as large-scale production platforms for biomaterials that can be programmed to provide functions not possible with existing materials. An animation depicts how it...
-
Video/AnimationDynamic Daylight Redirection SystemThis video shows Keojin Jin conducting a shoebox test that shows the light reflection effect to the top surface of the box as well as the reduction of direct light to the bottom surface of the box. Credit: Wyss Institute at Harvard University
-
Video/Animation3D Printing: Cellular CompositesMaterials scientists at Harvard University have created lightweight cellular composites via 3D printing. These fiber-reinforced epoxy composites mimic the structure and performance of balsa wood. Because the fiber fillers align along the printing direction, their local orientation can be exquisitely controlled. These 3D composites may be useful for wind turbine, automotive and aerospace applications, where...
-
Audio/PodcastShrimp Shells Could Make the Green Plastic of the FutureUnlike other forms of bioplastic, like those made from potatoes or corn, chitin plastic does not simply replace the carbon source for the polymer, it actually replaces the carbon-based plastic polymer, making it a totally biodegradable and sustainable material. Researchers at Harvard’s Wyss Institute used chitin from discarded shrimp shells from a shrimp processing plant...
-
Video/AnimationSustainability: The Ultimate ChallengeIn the past century plastic has transformed modern-day life on our planet, but is it sustainable? We produce 300 million tons of plastic per year* and recycle only 3%**. Are we content that the other 97% collects in oceans, landfills and the food chain? The challenge is clear: we will drown in plastic if we...
-
Video/AnimationChitosan BioplasticIn this video, the team grew a California Blackeye pea plant in soil enriched with its chitosan bioplastic over a three-week period – demonstrating the material’s potential to encourage plant growth once it is returned to the environment. Credit: Wyss Institute at Harvard University
-
Video/AnimationNew coating turns glass into superglassA transparent new coating makes ordinary glass tough, ultraslippery, and self-cleaning. The coating is based on SLIPS — the world’s slipperiest synthetic substance. Here, a droplet of dyed octane quickly beads up and rolls off a watch glass with the new coating. To learn more, go to Credit: Wyss Institute at Harvard University
-
Video/AnimationSLIPS‘SLIPS’ technology, inspired by the slippery pitcher plant that repels almost every type of liquid and solid, is a unique approach to coating industrial and medical surfaces that is based on nano/microstructured porous material infused with a lubricating fluid. By locking in water and other fluids, SLIPS technology creates slick, exceptionally repellent and robust self-cleaning...
-
Video/AnimationMaking Structures with DNA “Building Blocks”Researchers at the Wyss Institute have developed a method for building complex nanostructures out of short synthetic strands of DNA. Called single-stranded tiles (SSTs), these interlocking DNA “building blocks,” akin to Legos, can be programmed to assemble themselves into precisely designed shapes, such as letters and emoticons. Credit: Wyss Institute at Harvard University
-
Video/AnimationSLIPS: Keeping Ice AwayWhat if we could design surfaces that prevent ice formation? ‘SLIPS’ technology, inspired by the slippery pitcher plant that repels almost every type of liquid and solid, is a unique approach to coating industrial and medical surfaces that is based on nano/microstructured porous material infused with a lubricating fluid. By locking in water and other...