Search results
140 Results for 'Cancer'
- Technologies (11)
- Collaborations (1)
- Team (0)
- News (96)
- Events (0)
- Multimedia (32)
- Publications (0)
- Jobs (0)
Technologies 11
-
SomaCode: Getting cell therapies where they need to go
SomaCode is solving the problem of cell therapy delivery by identifying unique molecular “zip codes” for disease and engineering cells to home to those zip codes, making cell therapies safer and more effective. -
Cellular “Backpacks” to Slow Tumor Growth
Macrophages are the body’s multipurpose defense agents, patrolling for pathogens and engulfing cellular debris, foreign substances, microbes, and even cancer cells. But cancerous tumors have evolved an insidious defense mechanism: they can switch arriving macrophages from an anti-cancer state to a pro-cancer state, in which they help promote the tumor’s growth. As a result, attempts... -
FcMBL: Broad-Spectrum Pathogen Capture for Infectious Diseases
Microbial infection is the cause of life-threatening cases of sepsis, meningitis and multiple other diseases that are major causes of death world-wide. Equally prevalent are pathogenic contaminants in our environment, food, and manufacturing processes. In each case, the presence of dangerous microbes must be confirmed, and when they are found, they need to be removed,... -
Biomaterial Scaffolds for T Cell Expansion
Immunotherapy, or tweaking the body’s own immune system to treat disease, is attracting significant attention in the medical field for its potential to offer long-lasting cures with fewer side effects than chemotherapy or other drugs. One type of immunotherapy involves isolating T cells (a type of white blood cell) from a patient’s body, sometimes modifying... -
Implantable Cancer Vaccine
The implantable cancer vaccine is an aspirin-sized disc that is implanted under the skin and serves as an artificial lymph node, recruiting and training a patient's own immune cells to find and kill their cancer cells. It was validated in a Phase I clinical trial at the Wyss Institute, and is currently being developed by Novartis to treat melanoma. -
Microfluidic Drug Encapsulation
Because of their large molecular sizes and properties, biologic drugs, be it in the form of monoclonal antibodies that target disease-associated molecules or active proteins and enzymes that may correct deficiencies in the human body, have proven difficult to deploy in many cases. Their therapeutic effects on target cells and tissues often require high and...
Collaborations 1
News 96
Multimedia 32
-
Audio/PodcastBIOS Podcast – Accelerating Diagnostics Innovation with David Walt – Professor at Harvard, Core Faculty member at the Wyss InstituteDavid Walt is the Hansjörg Wyss Professor of Bioinspired Engineering at Harvard Medical School, Professor of Pathology at Harvard Medical School & Brigham and Women’s Hospital, Core Faculty Member of the Wyss Institute at Harvard University, Associate Member at the Broad Institute, Howard Hughes Medical Institute Professor, and is co-Director of the Mass General Brigham...
-
Audio/PodcastImmunoengineering with Dave Mooney – BIOS PodcastWyss Core Faculty member Dave Mooney is a leader in the fields of biomaterials, mechanotransduction, drug delivery, tissue engineering and immunoengineering. He is interested in understanding how cells sense signals in their environment and how this alters cell behavior. His laboratory develops biomaterials that exploit these signals to regulate specific cells and their function. They...
-
Video/Animation2021 Kabiller Prize in Nanoscience and NanomedicineDavid R. Walt, a Wyss Core Faculty member, member of the faculty at Harvard Medical School in the Department of Pathology, and a Howard Hughes Medical Institute Professor, is the winner of the 2021 Kabiller Prize in Nanoscience and Nanomedicine, the world’s largest monetary award for outstanding achievement in the field of nanotechnology and its...
-
Video/AnimationUsing deep learning to detect cancerous skin lesionsMelanoma is a very severe cancer that is often diagnosed too late to save patients’ lives, and most people do not regularly visit a dermatologist for skin exams. Early-stage identification of suspicious pigmented lesions (SPLs), ideally by primary care providers, could lead to improved melanoma prognosis. Researchers at the Wyss Institute and MIT have developed...
-
Video/AnimationToehold Exchange ProbesThis animation explains how toehold probes consisting of a “probe strand” and a “protector strand” are assembled and how they leverage thermodynamic principles to allow the specific detection of a correct target sequence, or to prevent them from detecting a spurious target sequence that can differ from the correct target sequence by only a single...
-
Audio/PodcastDisruptive: Cancer Vaccine and Immuno-MaterialsImmunotherapy – treatment that uses the body’s own immune system to help fight disease – has groundbreaking and life-saving implications. In an effort to make immunotherapy more effective, Wyss Institute researchers are developing new immuno-materials, which help modulate immune cells to treat or diagnose disease. In this episode of Disruptive, Dave Mooney, Wyss Core Faculty...