Multimedia search results
28 Results for ''
-
Video/AnimationInnovating Diagnostics to Improve Clinical Care and Patient OutcomesGuest speaker, Sarah-Beth Perullo, shares the immense difficulty she faced in obtaining a diagnosis for her mysterious symptoms. Her story is a sobering reminder of how frequent patient symptoms are dismissed in the medical field. Credit: Wyss Institute at Harvard University
-
Video/AnimationHow can we get diagnostics to patients faster?The Wyss Diagnostics Accelerator (DxA) is an initiative to enable the fast creation of diagnostic technologies to solve high-value clinical problems through deep collaborations driven by unmet diagnostic needs. Credit: Wyss Institute at Harvard University
-
Video/AnimationReimagine the World – Volume 2 – Diagnostics AcceleratorTwo clinicians collaborating with the Wyss Diagnostics Accelerator (DxA), Lise Johnson and Craig Hersh, as well as two members of the Wyss DxA Industrial Partnership Program, Nell Meosky Luo and Andy Levin, share how they would Reimagine the World and the personal stories that fuel their passion for the work they are doing. Credit: Wyss...
-
Video/AnimationWyss Diagnostics Accelerator – The Industrial Participant ProgramThe Industrial Participant Program (IPP) is a collaboration hub between healthcare testing companies and the scientific and clinical community within the Wyss ecosystem, driven by the Wyss Diagnostics Accelerator (DxA). Members of the IPP share the common goal of fast-tracking diagnostic technologies to meet unmet, critical needs. Credit: Wyss Institute at Harvard University
-
Video/AnimationReimagining Health Equity: Wyss Diagnostics AcceleratorWith the Wyss Diagnostics Accelerator (DxA), we’re reimagining health equity by accelerating the development and deployment of needed diagnostics in all settings, particularly in low-resource settings, by fostering deep collaborations driven by unmet needs. Credit: Wyss Institute at Harvard University
-
Video/AnimationReimagining Diagnostics for His Mom: Pawan JollyPawan Jolly is a Senior Staff Scientist leading the Sensors team to help develop better diagnostics for various illnesses and allergies. He also serves as the technology lead for the Wyss Diagnostics Accelerator. In this video, he shares a heartfelt personal story about his mom who suffers from severe allergies and how he would Reimagine...
-
Video/Animation2021 Kabiller Prize in Nanoscience and NanomedicineDavid R. Walt, a Wyss Core Faculty member, member of the faculty at Harvard Medical School in the Department of Pathology, and a Howard Hughes Medical Institute Professor, is the winner of the 2021 Kabiller Prize in Nanoscience and Nanomedicine, the world’s largest monetary award for outstanding achievement in the field of nanotechnology and its...
-
Video/AnimationBeating Back the CoronavirusWhen the coronavirus pandemic forced Harvard University to ramp down almost all on-site operations, members of the Wyss Institute community refocused their teams, and formed new ones, in order to fight COVID-19 on its multiple fronts. These efforts include building new pieces of personal protective equipment that were delivered to frontline healthcare workers, developing new...
-
Audio/PodcastDisruptive: Accelerating DiagnosticsIn this episode of Disruptive, Wyss Core Faculty member David Walt discusses his lessons learned from founding successful biotech companies and how he incorporates translation-minded thinking early on into his current diagnostic research in his labs at the Wyss Institute and the Brigham and Women’s Hospital. Walt and collaborators are inventing new diagnostic tools to...
-
Video/AnimationLe Lab Presents: Measuring and Mimicking Biology with David WaltWyss Core Faculty member David Walt, Ph.D. presented a talk at Le Laboratoire Cambridge on January 23rd 2019, titled Measuring and Mimicking Biology: Eyes, Noses, Genes and Proteins. Walt and his team have taken inspiration from both the visual and olfactory systems to design sensor arrays that are inspired by the properties of the natural systems. Optical fiber...
-
Audio/PodcastScientists not the Science: Entrepreneur – David WaltThis podcast episode was produced for the Scientists not Science series. Physicist and active researcher Dr. Stuart Higgins speaks with David Walt about his background, from growing up on the outskirts of Detroit, through his academic career, to the key seminar he gave that got him noticed by a venture capitalist. Throughout David’s career he...
-
Video/AnimationToehold Exchange ProbesThis animation explains how toehold probes consisting of a “probe strand” and a “protector strand” are assembled and how they leverage thermodynamic principles to allow the specific detection of a correct target sequence, or to prevent them from detecting a spurious target sequence that can differ from the correct target sequence by only a single...
-
Video/AnimationProject ABBIEProject ABBIE is inspired by the story of Abbie Benford, who succumbed to complications related to anaphylaxis just eight days before her 16th birthday. The Wyss Institute, in collaboration with Boston Children’s Hospital, is developing a wearable, non-invasive device that could sense anaphylaxis and automatically inject epinephrine in individuals who are unable to do so...
-
Audio/PodcastDisruptive: Fluorescent In Situ SequencingDeveloped at the Wyss, FISSEQ (fluorescent in situ sequencing) is a spatial gene sequencing technology that reads and visualizes the three-dimensional coordinates of RNA and mRNAs – the working copies of genes – within whole cells and tissues. FISSEQ affords insights into biological complexity that until now have not been possible. In this episode of...
-
Audio/PodcastDisruptive: Rapid, Low-Cost Detection of Zika & Future PandemicsThe rapid emergence of the Zika virus on the world stage calls for a detection system that is just as quick. In this episode of Disruptive, Wyss Core Faculty member and MIT professor Jim Collins and University of Toronto Assistant Professor Keith Pardee discuss how they developed a low cost, paper-based diagnostic platform that can...
-
Audio/PodcastDisruptive: Molecular RoboticsHow can DNA be programmed to build novel structures, devices, and robots? We have taken our understanding of DNA to another level, beginning to take advantage of some of DNA’s properties that have served nature so well, but in ways nature itself may have never pursued. Humans can now use DNA as a medium for...
-
Video/AnimationDetecting Zika: A platform for rapid, low-cost diagnosticsIn this video, a team of collaborators led by Wyss Core Faculty member James Collins discuss a low-cost, paper-based diagnostic system that they developed for detecting specific strains of the Zika virus, with the goal that it could soon be used in the field to easily screen blood, urine, or saliva samples. Credit: Wyss Institute...
-
Audio/PodcastDisruptive: Confronting SepsisIn this episode of Disruptive, Wyss Institute Founding Director Don Ingber and Senior Staff Scientist Mike Super discuss how their team developed a new therapeutic device inspired by the human spleen. This blood-cleansing approach can remove sepsis-causing pathogens from circulating blood without ever needing to know their identity. In animal studies, treatment with this device...
-
Video/AnimationPathogen-Extracting Sepsis TherapyThis video explains how sepsis induced by an overload of blood pathogens can be treated with the Wyss Institute’s improved pathogen-extracting, spleen-mimicking device. Blood is flown through a cartridge filled with hollow fibers that are coated with a genetically engineered blood protein inspired by a naturally-occurring human molecule called Mannose Binding Lectin (MBL). MBL is...
-
Video/AnimationGastrointestinal Re-ProgrammingIn this animation, see an example of how genetically engineered microbes being developed by researchers at the Wyss Institute could detect and treat a wide range of gastrointestinal illnesses and conditions. Credit: Wyss Institute at Harvard University
-
Video/AnimationDNA NanoswitchesGel electrophoresis, a common laboratory process, sorts DNA or other small proteins by size and shape using electrical currents to move molecules through small pores in gel. The process can be combined with novel DNA nanoswitches, developed by Wyss Associate Faculty member Wesley Wong, to allow for the simple and inexpensive investigation of life’s most...
-
Video/AnimationHuman Organs-On-ChipsWyss Institute researchers and a multidisciplinary team of collaborators have engineered microchips that recapitulate the microarchitecture and functions of living human organs, including the lung, intestine, kidney, skin, bone marrow and blood-brain barrier. These microchips, called ‘organs-on-chips’, offer a potential alternative to traditional animal testing. Each individual organ-on-chip is composed of a clear flexible polymer...
-
Video/AnimationToehold SwitchesIn this animation, Wyss Institute Postdoctoral Fellow Alex Green, Ph.D., the lead author of “Toehold Switches: De-Novo-Designed Regulators of Gene Expression”, narrates a step-by-step guide to the mechanism of the synthetic toehold switch gene regulator. Credit: Wyss Institute at Harvard University
-
Video/AnimationProgrammable Paper: Advances in Synthetic BiologyWyss Institute scientists discuss the collaborative environment and team effort that led to two breakthroughs in synthetic biology that can either stand alone as distinct advances – or combine forces to create truly tantalizing potentials in diagnostics and gene therapies. Credit: Wyss Institute at Harvard University.
-
Video/AnimationBioinspired Approach to Sepsis TherapyWyss Institute Founding Director Don Ingber, Senior Staff Scientist Michael Super and Technology Development Fellow Joo Kang explain how they engineered the Mannose-binding lectin (MBL) protein to bind to a wide range of sepsis-causing pathogens and then safely remove the pathogens from the bloodstream using a novel microfluidic spleen-like device. Credit: Wyss Institute at Harvard...
-
Video/AnimationFluorescent in situ SequencingIn this video, George Church, Ph.D., a Core Faculty member at the Wyss Institute and Professor of Genetics at Harvard Medical School, explains how fluorescent in situ sequencing could lead to new diagnostics that spot the earliest signs of disease, and how it could help reveal how neurons in the brain connect and function. Credit:...
-
Video/AnimationIntroduction to Organs-on-a-ChipWhat if we could test drugs without animal models? Wyss Institute researchers and a multidisciplinary team of collaborators have engineered microchips that recapitulate the microarchitecture and functions of living human organs, including the lung, intestine, kidney, skin, bone marrow and blood-brain barrier. These microchips, called ‘organs-on-chips’, offer a potential alternative to traditional animal testing. Each...
-
Video/AnimationIntroduction to Sepsis DiagnosticWhat if we could diagnose sepsis in just hours, not days? Wyss Institute researchers discuss their approach to a rapid sepsis diagnostic. Credit: Wyss Institute at Harvard University