Search results
66 Results for 'Lung Disease'
- Technologies (3)
- Collaborations (0)
- Team (0)
- News (49)
- Pages (0)
- Multimedia (14)
- Publications (0)
- Jobs (0)
- Events (0)
Technologies 3
-
NanoRx: Mechanically-Activated Drug Targeting
The Wyss team has developed a novel drug targeting nanotechnology that is activated locally by mechanical forces, either endogenous high shear stresses in blood created by vascular occlusion or mechanical energy applied locally using low-energy ultrasound radiation. Today, vascular blockage is the leading cause of death and disability in United States and Europe. Current therapies... -
Microfluidic Hemostasis Monitor
The body’s ability to stop bleeding, also known as hemostasis, is critical for survival. For patients with blood clotting disorders, medical conditions requiring the use of anticoagulation or antiplatelet drugs, or who require treatment with extracorporeal devices that circulate their blood outside of the body, it is essential that care providers can rapidly monitor their... -
Human Organs-on-Chips
Organ Chips are microfluidic devices lined with living human cells for drug development, disease modeling, and personalized medicine. Launched in 2014, Wyss startup Emulate, Inc., is leveraging the Wyss Institute’s Organ Chip technology to mimic human organs in vitro, enabling faster, better, and cheaper drug development and insights into human health.
News 49
Multimedia 14
-
Video/AnimationReimagine the World – Volume 2 – Diagnostics AcceleratorTwo clinicians collaborating with the Wyss Diagnostics Accelerator (DxA), Lise Johnson and Craig Hersh, as well as two members of the Wyss DxA Industrial Partnership Program, Nell Meosky Luo and Andy Levin, share how they would Reimagine the World and the personal stories that fuel their passion for the work they are doing. Credit: Wyss...
-
Audio/PodcastAnimal Free Labcast #4 – The PioneerWorld-class pioneer of biomedical research and innovation, Dr. Don Ingber, is the founding director of Harvard University’s Wyss Institute for Biologically Inspired Engineering. In 2010, Dr. Ingber developed a lung-on-a-chip – the first of its kind – and has continued to lead the field by developing numerous other organ chip models, demonstrating their ability to...
-
Audio/PodcastPreventing the Next Pandemic with Organ ChipsIn search for strategies to curb pandemics, scientists strive to understand how pathogens slip past the immune system and wreak havoc on the body. To achieve this goal, researchers study viral infection in models that mimic how different cell types interact with each other, the immune system, or the environment. Organ-on-a-chip models combine tissue engineering...
-
Video/AnimationBeating Back the Coronavirus: FDA-Approved Drug Repurposing PipelineWith the goal of rapidly repurposing FDA-approved drugs to treat COVID-19, the Wyss Institute is collaborating with the Frieman Lab at the University of Maryland Medical School and the tenOever Lab at the Icahn School of Medicine at Mount Sinai to establish a multidisciplinary pipeline that can rapidly predict, test, and validate potential treatments. Credit:...
-
Video/AnimationBeating Back the CoronavirusWhen the coronavirus pandemic forced Harvard University to ramp down almost all on-site operations, members of the Wyss Institute community refocused their teams, and formed new ones, in order to fight COVID-19 on its multiple fronts. These efforts include building new pieces of personal protective equipment that were delivered to frontline healthcare workers, developing new...
-
Video/AnimationInterrogator: Human Organ-on-ChipsThis video describes the “Interrogator” instrument that can be programmed to culture up to 10 different Organ Chips and sequentially transfer fluids between their vascular channels to mimic normal human blood flow between the different organs of our body. Its integrated microscope enables the continuous monitoring of the tissues’ integrities in the individual organ chips...