Multimedia search results
31 Results for ''
-
Video/AnimationReConstruct – 3D Bioprinted Vascularized Fat Tissues for Breast ReconstructionBreast cancer affects 15% of all women. Current options for breast reconstruction are insufficient and have poor patient outcomes. A research team at the Wyss Institute is addressing this clinical need by fabricating vascularized adipose tissue flaps for therapeutic use. Credit: Wyss Institute at Harvard University
-
Video/AnimationHow can we restore mobility to the sick and injured?Researchers at the Wyss Institute are working to improve treatment outcomes for patients suffering from reduced mobility. This video focuses on two platform technologies that could improve the quality of life for these patients: stochastic resonance and wearable soft robotics. Credit: Wyss Institute at Harvard University
-
Video/AnimationReimagining Robots to be Smaller, Softer, and SaferWyss Associate Faculty members, Conor Walsh and Rob Wood, discuss their visions for the future of bio-inspired soft robotics. Credit: Wyss Institute at Harvard University
-
Audio/PodcastEngineering Adhesive Biomaterials to Improve Healing – ThinkResearch PodcastBen Freedman, Ph.D., discusses his research on the design and synthesis of adhesive biomaterials for applications in orthopedic and cardiovascular surgery, as well as neurosurgery.
-
Video/AnimationJanus Tough Adhesives for Tendon RepairThere is a large unmet need for tendon regeneration therapies after injury. Building upon the tough gel adhesive technologies developed at the Wyss Institute at Harvard University and the Harvard School of Engineering and Applied Sciences, researchers from these institutions collaborated with a group at Novartis to create the Janus Tough Adhesives (JTAs). This two-sided...
-
Video/AnimationSoft Robots Aiding the Elderly and People with Physical ImpairmentsAn interdisciplinary team at Harvard University School of Engineering and the Wyss Institute at Harvard University is building soft robots for older adults and people with physical impairments. Examples of these robots are the Assistive Hip Suit and Soft Robotic Glove, both of which have been included in the 2021-2022 Smithsonian Institution exhibit entitled “FUTURES.”...
-
Audio/PodcastOf Mice and Massage with Dr. Bo Ri SeoYou know those people who say you can’t change tissue? Well Wyss Postdoctoral Fellow Bo Ri Seo explains otherwise on this episode of BodyTalk. She is the lead writer on an exciting paper. Dr. Bo Ri Seo is a biomedical engineer who has been studying mechanobiology and mechanotherapy to develop therapeutic strategies for cancer and...
-
Video/AnimationInnovation Showcase – Tough Gel TechnologyJay Sugarman talks with Benjamin Freedman, PhD. Benjamin is a Postdoctoral Fellow at the Wyss Institute for Biologically Inspired Engineering at Harvard University. He’s on Innovation Showcase to inform viewers about the groundbreaking research he and some of his colleagues have been involved with related to the development of the next generation of medical-grade adhesives,...
-
Video/AnimationSmart Thermally Actuating TextilesSmart Thermally Actuating Textiles (STATs) are tightly-sealed pouches that are able to change shape or maintain their pressure even in environments in which the exterior temperature or airflow fluctuates. This soft robotics technology could be developed as novel components of rehabilitation therapies or to prevent tissue damage in hospital bed or wheelchair-bound individuals. Credit: Wyss...
-
Video/AnimationThe Human Mind and Gait ControlResearchers study how our brains adjust to changes in our walking strides, gaining insights that could be used to develop better physical rehabilitation programs. Credit: Wyss Institute
-
Video/AnimationTEDMED: How wearable robots are transforming human mobilityAs a patient struggling to walk after a serious accident on the drive across the country to graduate school, Kathleen O’Donnell became acutely aware of the role mobility can play in quality of life. With this new insight, Kathleen focused her studies on prosthetics and assisted devices. In her own words, “As I became more...
-
Video/AnimationHip-only Soft Exosuit for both Walking and RunningThis video demonstrates the use of the hip-assisting exosuit in different natural environments, and shows how the robotic device senses changes in the gait-specific vertical movements of the center of mass during walking and running to rapidly adjust its actuation. Credit: Wyss Institute at Harvard University
-
Audio/PodcastTechnology and Biology brought together in BiomechanicsWearable technology and robotics are two rehabilitation methods used to help those with limited mobility regain movement. Paolo Bonato, PhD, Director of the Motion Analysis Laboratory at Spaulding Rehabilitation Hospital and Wyss Institute Associate Faculty member, discusses the role of innovative technology in rehabilitation in this ThinkResearch episode from the Harvard Catalyst.
-
Video/AnimationScience Nation: Engineering soft robots for paradigm shift in rehabilitationThis video was produced by the National Science Foundation: Tim Gatautis suffered a spinal cord injury in a swimming accident nearly a decade ago and he’s had to use a wheelchair ever since. Gatautis would like to be able to do more for himself, which brings him to the Wyss Institute and the Biodesign Lab...
-
Video/AnimationMulti-joint Personalized Soft Exosuit Breaks New GroundA multidisciplinary team at Harvard’s Wyss Institute and Harvard SEAS has developed a mobile multi-joint soft exosuit using an automatic tuning strategy that could reduce fatigue in soldiers, firefighters or other rescue workers. Credit: Wyss Institute at Harvard University
-
Video/AnimationSoft Exosuit: Human-in-the-Loop Bayesian OptimizationResearchers from the Wyss Institute and Harvard SEAS have developed a human-in-the-loop Bayesian optimization method to personalize the hip assistance that a soft exosuit can provide. The optimized assistance helps reduce metabolic cost compared to walking without the device, or with the device not further personalized. Credit: Harvard Biodesign Lab/Harvard Agile Robotics Lab Learn more...
-
Video/AnimationTough Gel AdhesivesInspired by the mucus secreted by the Dusky Arion slug, researchers at the Wyss Institute have developed a surgical adhesive that can adhere to wet and dynamic surfaces inside the body, including the heart, lung, tendons, cartilage, and bone. Coupled with a novel tough hydrogel, which can undergo huge amounts of deformation without breaking, this...
-
Video/AnimationSoft Exosuit for Post-stroke Gait Re-trainingThis video explains how exosuit technology, developed at the Wyss Institute for Biologically Inspired Engineering, applied to ankle movements helps patients post-stroke regain a more normal gait. Credit: Wyss Institute at Harvard University
-
Video/AnimationSoft Fabric SensorsThis textile-based sensor effectively registers fine motor movements of the human body, taking researchers one step closer to creating soft, wearable robots. Credit: Wyss Institute at Harvard University
-
Video/AnimationHow Humans Walk…With RobotsResearchers at the Wyss Institute and Spaulding Rehabilitation Hospital shed light on how humans respond – or do not respond – to forces applied by rehabilitative robots. Credit: Wyss Institute at Harvard University
-
Audio/PodcastDisruptive: Sports GenomicsWith 100 trillion cells in the human body, bacteria outnumber our own human cells 2 to 1. These bacteria make up one’s microbiome, and particularly bacteria in our guts affect all our key organ functions. They play a role in our health, development and wellness, including endurance, recovery and mental aptitude. In this episode of...
-
Audio/PodcastDisruptive: Mechanotherapeutics – From Drugs to WearablesMechanobiology reveals insights into how the body’s physical forces and mechanics impact development, physiological health, and prevention and treatment of disease. The emerging field of Mechanotherapeutics leverages these insights towards the development of new types of pharmaceuticals, drug delivery systems, engineered tissues, and wearable therapeutic devices that leverage physical forces or target mechanical signaling pathways...
-
Video/AnimationMechanotherapeutics: From Drugs to WearablesThe Wyss Institute’s 7th annual international symposium focused on advances in the field of Mechanobiology that have resulted in the development of new types of pharmaceuticals, drug delivery systems, engineered tissues, and wearable therapeutic devices that leverage physical forces or target mechanical signaling pathways as a core part of their mechanism of action. Organized by...
-
Audio/PodcastSynthetic Stingray May Lead To A Better Artificial HeartSynthetic Stingray May Lead To A Better Artificial Heart was originally broadcast on NPR’s All Things Considered on July 7, 2016. This story features Wyss Core Faculty member Kit Parker. The original broadcast story can be found here.
-
Audio/PodcastDisruptive: Bioinspired Robotics (pt. 1)Our bodies—and all living systems—accomplish tasks far more complex and dynamic than anything yet designed by humans. Many of the most advanced robots in use today are still far less sophisticated than ants that “self–organize” to build an ant hill, or termites that work together to build impressive, massive mounds in Africa. From insects in...
-
Audio/PodcastDisruptive: Bioinspired Robotics (pt. 3)Our bodies—and all living systems—accomplish tasks far more complex and dynamic than anything yet designed by humans. Many of the most advanced robots in use today are still far less sophisticated than ants that “self–organize” to build an ant hill, or termites that work together to build impressive, massive mounds in Africa. From insects in...
-
Audio/PodcastDisruptive: Bioinspired Robotics (pt. 2)Our bodies—and all living systems—accomplish tasks far more complex and dynamic than anything yet designed by humans. Many of the most advanced robots in use today are still far less sophisticated than ants that “self–organize” to build an ant hill, or termites that work together to build impressive, massive mounds in Africa. From insects in...
-
Video/AnimationBioinspired Robotics: Softer, Smarter, SaferThe Bioinspired Robotics platform at HarvardÍs Wyss Institute for Biologically Inspired Engineering looks into Nature to obtain insights for the development of new robotic components that are smarter, softer, and safer than conventional industrial robots. By looking at natural intelligence, collective behavior, biomechanics, and material properties not found in manmade systems, scientists at the Wyss...
-
Video/AnimationMeet Metamorpho: A Robot Simulating Biological TransformationMetamorpho is a robotic platform designed for emulating the developmental induction of locomotor patterns across all animals. This video shows a robotic system with a transforming body morphology that simulates the biological transformation of a tadpole to a frog. Like a tadpole, Metamorpho starts to swim with tail alone while legs receive a feedback signal...
-
Video/AnimationMotion Capture LabThe Wyss InstituteÍs Motion Capture Lab is a state of the art facility designed to measure and analyze human motion. It allows Wyss Institute scientists and their collaborators to design, build and test assistive technologies, ultimately accelerating the translation of new devices to improve human lives. Credit: Wyss Institute at Harvard University
-
Video/AnimationSoft Robotic ExosuitIn this video, Harvard faculty member Conor Walsh and members of his team explain how the biologically inspired Soft Exosuit targets enhancing the mobility of healthy individuals and restoring the mobility of those with physical disabilities. This research is partially funded by the National Science Foundation. Note: This technology is currently in the research and...