Search results
74 Results for 'Toxicology'
- Technologies (5)
- Collaborations (0)
- Team (0)
- News (55)
- Pages (0)
- Multimedia (14)
- Publications (0)
- Jobs (0)
- Events (0)
Technologies 5
-
AminoX: Making Better Protein Drugs, Quicker and Cheaper
AminoX enables protein drugs to only become active in the tumor microenvironment and not elsewhere in the body to avoid immune-related adverse effects in the body. By designing and building non-standard amino acids into strategic positions of protein drugs, AminoX provides tumor-specific, and longer-lasting target inhibition. -
Paper-Based Diagnostics
With the imminent threat of new pandemics and frequent disease outbreaks exemplified by the recent Ebola and Zika epidemics, there is a growing need for low-cost, easily deployable and simple-to-use diagnostic tools. The Wyss Institute has developed paper-based synthetic gene networks as a next generation diagnostic technology for use in global healthcare crises and patient... -
FcMBL: Broad-Spectrum Pathogen Capture for Infectious Disease Diagnosis and Therapy
The Problem Infectious diseases have plagued humanity for millennia, and the pathogens that infect and sicken humans are constantly evolving. Severe infections can cause sepsis, a life-threatening condition in which a patient’s immune system overreacts to the infection. The body starts to attack itself, which can lead to tissue damage, organ failure, and death. Sepsis... -
RAPID: Testing for Food Contaminants
Contamination of food by microorganisms such as certain bacteria, viruses and fungi is a constant concern, with even miniscule amounts of certain species posing a risk for foods to become unsafe and spoiled during storage. Current safety and quality tests are often not sensitive enough to detect rare species, and because they first require the... -
Human Organs-on-Chips
Organ Chips are microfluidic devices lined with living human cells for drug development, disease modeling, and personalized medicine. Launched in 2014, Wyss startup Emulate, Inc., is leveraging the Wyss Institute’s Organ Chip technology to mimic human organs in vitro, enabling faster, better, and cheaper drug development and insights into human health.
News 55
Multimedia 14
-
Video/AnimationAminoX: Making Better Protein Drugs, Quicker and CheaperA synthetic biology and advanced chemistry platform that efficiently incorporates non-standard amino acids by hacking the ubiquitous protein synthesis process. Credit: Wyss Institute at Harvard University
-
Video/AnimationInterrogator: Human Organ-on-ChipsThis video describes the “Interrogator” instrument that can be programmed to culture up to 10 different Organ Chips and sequentially transfer fluids between their vascular channels to mimic normal human blood flow between the different organs of our body. Its integrated microscope enables the continuous monitoring of the tissues’ integrities in the individual organ chips...
-
Video/AnimationKidney Organiods: Flow-Enhanced Vascularization and Maturation In VitroThis video explains how the collaborative project created vascularized kidney organoids and how they advance the field of tissue engineering. Credit: Wyss Institute at Harvard University.
-
Video/AnimationThis is Your Brain on ChipsHow do you study something as complex as the human brain? Take it apart. Wyss researchers have created Organ Chips that mimic the blood-brain barrier and the brain and, by linking them together, discovered how our blood vessels and our neurons influence each other. Credit: Wyss Institute at Harvard University
-
Video/Animation3D Printed Heart-on-a-ChipIn this video, learn how Wyss Institute and Harvard SEAS researchers have created a 3D-printed heart-on-a-chip that could lead to new customizable devices for short-term and long-term in vitro testing. Credit: Johan U. Lind (Disease Biophysics Group), Alex D. Valentine and Lori K. Sanders (Lewis Lab)/Harvard University
-
Video/AnimationBioprinting: The Kidney’s Proximal TubulesIn this video, see how the Wyss Institute team has advanced bioprinting to the point of being able to fabricate a functional subunit of a kidney. Credit: Wyss Institute at Harvard University