Multimedia search results
21 Results for ''
-
Audio/PodcastTechnology and Biology brought together in BiomechanicsWearable technology and robotics are two rehabilitation methods used to help those with limited mobility regain movement. Paolo Bonato, PhD, Director of the Motion Analysis Laboratory at Spaulding Rehabilitation Hospital and Wyss Institute Associate Faculty member, discusses the role of innovative technology in rehabilitation in this ThinkResearch episode from the Harvard Catalyst.
-
Video/AnimationScience Nation: Engineering soft robots for paradigm shift in rehabilitationThis video was produced by the National Science Foundation: Tim Gatautis suffered a spinal cord injury in a swimming accident nearly a decade ago and he’s had to use a wheelchair ever since. Gatautis would like to be able to do more for himself, which brings him to the Wyss Institute and the Biodesign Lab...
-
Video/AnimationMulti-joint Personalized Soft Exosuit Breaks New GroundA multidisciplinary team at Harvard’s Wyss Institute and Harvard SEAS has developed a mobile multi-joint soft exosuit using an automatic tuning strategy that could reduce fatigue in soldiers, firefighters or other rescue workers. Credit: Wyss Institute at Harvard University
-
Video/AnimationSoft Exosuit: Human-in-the-Loop Bayesian OptimizationResearchers from the Wyss Institute and Harvard SEAS have developed a human-in-the-loop Bayesian optimization method to personalize the hip assistance that a soft exosuit can provide. The optimized assistance helps reduce metabolic cost compared to walking without the device, or with the device not further personalized. Credit: Harvard Biodesign Lab/Harvard Agile Robotics Lab Learn more...
-
Video/AnimationHybrid 3D Printing of Soft ElectronicsA new hybrid 3D printing technique developed at the Wyss Institute at Harvard University, Harvard’s John A. Paulson School of Engineering and Applied Sciences, and the Air Force Research Laboratory combines stretchable conductive inks and electronic components into flexible, durable wearable devices that move with the body and offer increased programmability. This research was supported...
-
Video/AnimationSoft Exosuit for Post-stroke Gait Re-trainingThis video explains how exosuit technology, developed at the Wyss Institute for Biologically Inspired Engineering, applied to ankle movements helps patients post-stroke regain a more normal gait. Credit: Wyss Institute at Harvard University
-
Video/AnimationSoft Fabric SensorsThis textile-based sensor effectively registers fine motor movements of the human body, taking researchers one step closer to creating soft, wearable robots. Credit: Wyss Institute at Harvard University
-
Video/AnimationSoft Exosuit for RunningBuilding upon previous soft exosuit technology, researchers at the Wyss Institute and Harvard SEAS have developed a soft exosuit for running. This exosuit applies forces to the hip joint using thin, flexible wires, assisting the muscles during each stride. Using an off-board actuation system, compared to not wearing the exosuit, this exosuit can reduce the...
-
Video/AnimationProject ABBIEProject ABBIE is inspired by the story of Abbie Benford, who succumbed to complications related to anaphylaxis just eight days before her 16th birthday. The Wyss Institute, in collaboration with Boston Children’s Hospital, is developing a wearable, non-invasive device that could sense anaphylaxis and automatically inject epinephrine in individuals who are unable to do so...
-
Audio/PodcastDisruptive: Mechanotherapeutics – From Drugs to WearablesMechanobiology reveals insights into how the body’s physical forces and mechanics impact development, physiological health, and prevention and treatment of disease. The emerging field of Mechanotherapeutics leverages these insights towards the development of new types of pharmaceuticals, drug delivery systems, engineered tissues, and wearable therapeutic devices that leverage physical forces or target mechanical signaling pathways...
-
Video/AnimationMechanotherapeutics: From Drugs to WearablesThe Wyss Institute’s 7th annual international symposium focused on advances in the field of Mechanobiology that have resulted in the development of new types of pharmaceuticals, drug delivery systems, engineered tissues, and wearable therapeutic devices that leverage physical forces or target mechanical signaling pathways as a core part of their mechanism of action. Organized by...
-
Video/Animation3D Printing Metal in MidairIn this video, see the laser-assisted method developed by Wyss Core Faculty member Jennifer Lewis that allows metal to be 3D printed in midair. Credit: Lewis Lab / Wyss Institute at Harvard University
-
Audio/PodcastDisruptive: Bioinspired Robotics (pt. 1)Our bodies—and all living systems—accomplish tasks far more complex and dynamic than anything yet designed by humans. Many of the most advanced robots in use today are still far less sophisticated than ants that “self–organize” to build an ant hill, or termites that work together to build impressive, massive mounds in Africa. From insects in...
-
Audio/PodcastDisruptive: Bioinspired Robotics (pt. 3)Our bodies—and all living systems—accomplish tasks far more complex and dynamic than anything yet designed by humans. Many of the most advanced robots in use today are still far less sophisticated than ants that “self–organize” to build an ant hill, or termites that work together to build impressive, massive mounds in Africa. From insects in...
-
Audio/PodcastDisruptive: Bioinspired Robotics (pt. 2)Our bodies—and all living systems—accomplish tasks far more complex and dynamic than anything yet designed by humans. Many of the most advanced robots in use today are still far less sophisticated than ants that “self–organize” to build an ant hill, or termites that work together to build impressive, massive mounds in Africa. From insects in...
-
Video/AnimationBioinspired Robotics: Softer, Smarter, SaferThe Bioinspired Robotics platform at HarvardÍs Wyss Institute for Biologically Inspired Engineering looks into Nature to obtain insights for the development of new robotic components that are smarter, softer, and safer than conventional industrial robots. By looking at natural intelligence, collective behavior, biomechanics, and material properties not found in manmade systems, scientists at the Wyss...
-
Video/AnimationSoft Robotic GloveThe soft robotic glove under development at the Wyss Institute could one day be an assistive device used for grasping objects, which could help patients suffering from muscular dystrophy, amyotrophic lateral sclerosis (ALS), incomplete spinal cord injury, or other hand impairments to regain some daily independence and control of their environment. This research is partially...
-
Video/AnimationMotion Capture LabThe Wyss InstituteÍs Motion Capture Lab is a state of the art facility designed to measure and analyze human motion. It allows Wyss Institute scientists and their collaborators to design, build and test assistive technologies, ultimately accelerating the translation of new devices to improve human lives. Credit: Wyss Institute at Harvard University
-
Video/AnimationSoft Robotic ExosuitIn this video, Harvard faculty member Conor Walsh and members of his team explain how the biologically inspired Soft Exosuit targets enhancing the mobility of healthy individuals and restoring the mobility of those with physical disabilities. This research is partially funded by the National Science Foundation. Note: This technology is currently in the research and...
-
Video/AnimationTough GelA team at the Wyss Institute is honing a tough, rubbery hydrogel initially developed at Harvards School of Engineering and Applied Sciences. The gel is 90 percent water, yet it stretches without breaking to more than 20 times its original length and recoils like rubber, the researchers first reported in Nature in 2012. In fact,...
-
Video/AnimationTiny 3D-Printed BatteryIn this video, a 3D-printer nozzle narrower than a human hair lays down a specially formulated “ink” layer by layer to build a microbattery’s anode from the ground up. Unlike ink in an office inkjet printer, which comes out as droplets of liquid and wets a piece of paper, these 3D-printer inks are specially formulated...