Multimedia
- Multimedia Type
- Focus Areas
- 3D Organ EngineeringHighly functional, multiscale, vascularized organ replacements that can be seamlessly integrated into the body
- Bioinspired TherapeuticsTherapeutic discovery and development enabled by microsystems engineering, molecular engineering, computational design, and organ-on-a-chip in vitro human experimentation technology
- Diagnostics for Human and Planetary HealthDeveloping new diagnostic technologies that solve important healthcare and environmental challenges
- Immuno-MaterialsMaterial-based systems capable of modulating immune cells ex vivo and in the human body to treat or diagnose disease
- Living Cellular DevicesRe-engineered living cells and biological circuits as programmable devices for medicine, manufacturing and sustainability
- Molecular RoboticsSelf-assembling molecules that can be programmed like robots to carry out specific tasks without requiring power
- Sustainable FuturesSustainable technologies that link human and environmental health, providing solutions to problems in materials, remediation, food, and resilience
- Synthetic BiologyBreakthrough approaches to reading, writing, and editing nucleic acids and proteins for multiple applications, varying from healthcare to data storage
- Technology Areas
- 3D Printing
- Actuators
- Biomarker
- Building Materials
- Cell Therapy
- Diagnostics
- Disease Model
- DNA Nanostructures
- Drug Development
- Filtration & Separation
- Gene Circuits
- Imaging
- Immunotherapy
- Medical Devices
- Microbiome
- Microfabrication
- Microfluidics
- Microsystems
- Nanodevices
- Organs on Chips
- Robots
- Sensors
- Surface Coatings
- Therapeutics
- Vaccines
- Wearable Devices
- Disciplines
- Architecture
- Biochemistry
- Bioinformatics
- Biotechnology
- Cell Biology
- Chemical Engineering
- Chemistry
- Computer Science
- Control
- Design
- Electrical Engineering
- Genetics
- Genome Engineering
- Immune Engineering
- Materials Science
- Mechanical Engineering
- Mechanobiology
- Medicine
- Microtechnology
- Nanobiotechnology
- Nanotechnology
- Pharmacology
- Physics
- Physiology
- Polymer Chemistry
- Regenerative Medicine
- Robotics
- Self Assembly
- Stem Cell Engineering
- Surgery
- Synthetic Biology
- Tissue Engineering
- Toxicology
- Application Areas
- Apparel
- Bacteria
- Balance & Motor Control
- Brain Disease
- Cancer
- Diabetes
- Drug Development
- Energy
- Fundamental Research
- Healthy Aging
- Heart Disease
- Hemostasis
- Infectious Disease
- Inflammatory Diseases
- Intestinal Disease
- Kidney Disease
- Liver Disease
- Lung Disease
- Manufacturing
- Motor Control
- Personalized Medicine
- Rehabilitation
- Sepsis
- Stroke
- Sustainability
- Targeted Drug Delivery
- Toxicology
- Water
- Women's Health
0 Results for No Current Selection
-
Video/AnimationRAD Sampler: Device for investigating delicate marine organismsLike an underwater pokéball, this origami-inspired sampling device folds up into a container for capturing delicate marine organisms. Credit: Wyss Institute at Harvard University
-
Video/AnimationHAMR: Robotic Cockroach for Underwater ExplorationsThis video shows how the HAMR can transition from land to water, paddle on the surface of water, or sink to the ground to start walking again just as it would on dry land. Credit: Yufeng Chen, Neel Doshi, and Benjamin Goldberg/Harvard University
-
Video/AnimationFLIPS: Ferrofluid-Containing Liquid-Infused Porous SurfacesAs a magnetic field is applied and moved, the ferrofluid component of FLIPS responds dynamically, allowing the surface to be endlessly reconfigured. Credit: Harvard SEAS
-
Video/AnimationTEDx Beacon Street Salon: Reversing Human AgingWyss Institute Core Faculty member George Church, Ph.D., was the opening speaker at the TEDx Beacon Street saloon event hosted at the Franklin Park Zoo. He presented from inside the tapir cage! Talk summary: Animals can be an extremely useful resource in prolonging human lives and promoting general health. For example, there are organs in...
-
Le Lab Presents: The Mechanical Side of Artificial Intelligence with Rob WoodWyss Core Faculty member Robert Wood, Ph.D. presented a talk at Le Laboratoire Cambridge on May 16th 2018 titled The Mechanical Side of Artificial Intelligence. Artificial intelligence typically focuses on perception, learning, and control methods to enable autonomous robots to make and act on decisions in real environments. Wood’s research focuses on the design, mechanics,...
-
Audio/PodcastProtein Engineering: Editing FunctionalityProtein Engineering: Editing Functionality was originally broadcast on Think Research, a podcast by Harvard University, on April 19, 2018. In this story, Wyss Lead Senior Staff Scientist Michael Super, Ph.D. shares his story of how the spread of infectious disease throughout South Africa and London inspired him to pursue human health and combat disease. The...
-
Video/AnimationHumans of the Wyss – Faculty Edition with Katia BertoldiOur new interview series, “Humans of the Wyss – Faculty Edition,” features Wyss Institute faculty members discussing how they think about their work, the influences that help shape them as scientists, and their collaborations at the Wyss Institute and beyond. In the first edition of the series, Lindsay Brownell, Wyss Institute Communications team member, talks...
-
Video/AnimationToehold Exchange ProbesThis animation explains how toehold probes consisting of a “probe strand” and a “protector strand” are assembled and how they leverage thermodynamic principles to allow the specific detection of a correct target sequence, or to prevent them from detecting a spurious target sequence that can differ from the correct target sequence by only a single...
-
Video/AnimationCatalytic Nanoarchitectures for Clean AirThe Wyss Institute is developing a new type of coating for catalytic converters that, inspired by the nanoscale structure of a butterfly’s wing, can dramatically reduce the cost and improve the performance of air purification technologies, making them more accessible to all. Credit: Wyss Institute at Harvard University
-
Video/AnimationSoft Exosuit: Human-in-the-Loop Bayesian OptimizationResearchers from the Wyss Institute and Harvard SEAS have developed a human-in-the-loop Bayesian optimization method to personalize the hip assistance that a soft exosuit can provide. The optimized assistance helps reduce metabolic cost compared to walking without the device, or with the device not further personalized. Credit: Harvard Biodesign Lab/Harvard Agile Robotics Lab Learn more...
-
Video/AnimationTough Gel AdhesivesInspired by the mucus secreted by the Dusky Arion slug, researchers at the Wyss Institute have developed a surgical adhesive that can adhere to wet and dynamic surfaces inside the body, including the heart, lung, tendons, cartilage, and bone. Coupled with a novel tough hydrogel, which can undergo huge amounts of deformation without breaking, this...
-
Video/Animation3D Printing: Soft Robots with Embedded SensorsResearchers from the Wyss Institute and Harvard SEAS have developed a platform for 3D printed, soft robots with embedded sensors that can feel touch, pressure, motion and temperature. This technology could be used for integrated sensing across a range of soft robotic applications. Credit: Harvard SEAS