Multimedia
- Multimedia Type
- Focus Areas
- 3D Organ EngineeringHighly functional, multiscale, vascularized organ replacements that can be seamlessly integrated into the body
- Bioinspired Therapeutics & DiagnosticsTherapeutic discovery and diagnostics development enabled by microsystems engineering, molecular engineering, computational design, and organ-on-a-chip in vitro human experimentation technology
- Computational Design & DiscoveryCombining predictive bioanalytics and machine learning with physical and mathematical modeling and simulation
- Diagnostics AcceleratorDeveloping new diagnostic technologies that solve important healthcare challenges through collaboration at the Wyss Institute with clinicians and industry partners
- Immuno-MaterialsMaterial-based systems capable of modulating immune cells ex vivo and in the human body to treat or diagnose disease
- Living Cellular DevicesRe-engineered living cells and biological circuits as programmable devices for medicine, manufacturing and sustainability
- Molecular RoboticsSelf-assembling molecules that can be programmed like robots to carry out specific tasks without requiring power
- Synthetic BiologyBreakthrough approaches to reading, writing, and editing nucleic acids and proteins for multiple applications, varying from healthcare to data storage
- Technology Areas
- 3D Printing
- Actuators
- Biomarker
- Building Materials
- Cell Therapy
- Diagnostics
- Disease Model
- DNA Nanostructures
- Drug Development
- Filtration & Separation
- Gene Circuits
- Imaging
- Immunotherapy
- Medical Devices
- Microbiome
- Microfabrication
- Microfluidics
- Microsystems
- Nanodevices
- Organs on Chips
- Robots
- Sensors
- Surface Coatings
- Therapeutics
- Vaccines
- Wearable Devices
- Disciplines
- Aging
- Architecture
- Biochemistry
- Bioinformatics
- Biotechnology
- Cell Biology
- Chemical Engineering
- Chemistry
- Computer Science
- Control
- Design
- Electrical Engineering
- Genetics
- Genome Engineering
- Immune Engineering
- Materials Science
- Mechanical Engineering
- Mechanobiology
- Medicine
- Microtechnology
- Nanobiotechnology
- Nanotechnology
- Pharmacology
- Physics
- Physiology
- Polymer Chemistry
- Regenerative Medicine
- Robotics
- Self Assembly
- Stem Cell Engineering
- Surgery
- Synthetic Biology
- Tissue Engineering
- Toxicology
- Application Areas
- Anti-aging
- Apparel
- Bacteria
- Balance & Motor Control
- Brain Disease
- Cancer
- Diabetes
- Drug Development
- Energy
- Fundamental Research
- Heart Disease
- Hemostasis
- Infectious Disease
- Inflammatory Diseases
- Intestinal Disease
- Kidney Disease
- Liver Disease
- Lung Disease
- Manufacturing
- Motor Control
- Personalized Medicine
- Rehabilitation
- Sepsis
- Stroke
- Sustainability
- Targeted Drug Delivery
- Toxicology
- Water
- Women's Health
296 Results for Video/Animation
-
Video/AnimationRoot: Meets Students At Any LevelThis video demonstrates how Root can be used in classrooms to help instill coding and programming skills in students at any level. Developed by a team of researchers led by Wyss Core Faculty member Radhika Nagpal, the Root system is designed to be as intuitive and approachable as any tablet app, providing a framework easy...
-
Video/AnimationMechanotherapeutics: From Drugs to WearablesThe Wyss Institute’s 7th annual international symposium focused on advances in the field of Mechanobiology that have resulted in the development of new types of pharmaceuticals, drug delivery systems, engineered tissues, and wearable therapeutic devices that leverage physical forces or target mechanical signaling pathways as a core part of their mechanism of action. Organized by...
-
Video/AnimationOctobot: A Soft, Autonomous RobotThe Octobot is the first entirely soft, autonomous robot. It is made by a combination of embedded 3D printing, modeling, and soft lithography. Inspired by real octopuses, the Octobot has no rigid components. It is powered by a chemical reaction and controlled with a microfluidic logic that directs the flow of fuel. The logic circuit...
-
Video/AnimationDiscrete Molecular ImagingWyss Institute Core Faculty member Peng Yin and his co-worker Mingjie Dai explain in this video, how Discrete Molecular Imaging (DMI) can be used to enhance their DNA-PAINT super-resolution imaging platform to visualize features on a single-molecule scale. Credit: Wyss Institute at Harvard University
-
Video/AnimationSuper Resolution Discrete Molecular Imaging AnimationSee in this animation, how Discrete Molecular Imaging (DMI) uses DNA nanotechnology to reveal densely packed molecular features in structures similar in size as single protein molecules. Credit: Wyss Institute at Harvard University
-
Video/AnimationLiquid Gated MembranesThe first part of this animation compares the transmembrane pressure (TMP) between a standard filter and a liquid gated membrane filter (depicted by pressure gauge in bottom right corner). The second part of the animation shows the tendency of each system to clog up due to fouling. The liquid gated membrane filter results in a...
-
Video/AnimationRobobee: Saving Energy While in the AirThe RoboBee, pioneered at the Harvard Microrobotics Lab, uses an electrode patch and a foam mount that absorbs shock to perch on surfaces and conserve energy in flight. Credit: Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS)
-
Video/AnimationEfficient Recovery of Stem Cell SheetsSee in this video how an intact sheet of mesenchymal stem cells, stained with a violet dye, can be lifted off the infused polymer substrate in the culture dish using a filter paper and transferred to a new surface. Credit: Wyss Institute at Harvard University
-
Video/AnimationDetecting Zika: A platform for rapid, low-cost diagnosticsIn this video, a team of collaborators led by Wyss Core Faculty member James Collins discuss a low-cost, paper-based diagnostic system that they developed for detecting specific strains of the Zika virus, with the goal that it could soon be used in the field to easily screen blood, urine, or saliva samples. Credit: Wyss Institute...
-
Video/Animation3D Printing Metal in MidairIn this video, see the laser-assisted method developed by Wyss Core Faculty member Jennifer Lewis that allows metal to be 3D printed in midair. Credit: Lewis Lab / Wyss Institute at Harvard University
-
Video/AnimationPrinting Vascular TissuePrinting vessel vasculature is essential for sustaining functional living tissues. Until now, bioengineers have had difficulty building thick tissues, lacking a method to embed vascular networks. A 3D bioprinting method invented at the Wyss Institute and Harvard SEAS embeds a grid of vasculature into thick tissue laden with human stem cells and connective matrix. Printed...
-
Video/AnimationMeet Root: The Robot that Brings Code to LifeComputational thinking and programming underlie the digital world around us – yet K-16 teachers have been challenged to find the right teaching tool to instill coding and programming skills in beginners of a wide age range. Recognizing the pressing need for young students to be digitally literate and the remarkable educational power of robots, a...