Multimedia
- Multimedia Type
- Focus Areas
- 3D Organ EngineeringHighly functional, multiscale, vascularized organ replacements that can be seamlessly integrated into the body
- Bioinspired Therapeutics & DiagnosticsTherapeutic discovery and diagnostics development enabled by microsystems engineering, molecular engineering, computational design, and organ-on-a-chip in vitro human experimentation technology
- Computational Design & DiscoveryCombining predictive bioanalytics and machine learning with physical and mathematical modeling and simulation
- Diagnostics AcceleratorDeveloping new diagnostic technologies that solve important healthcare challenges through collaboration at the Wyss Institute with clinicians and industry partners
- Immuno-MaterialsMaterial-based systems capable of modulating immune cells ex vivo and in the human body to treat or diagnose disease
- Living Cellular DevicesRe-engineered living cells and biological circuits as programmable devices for medicine, manufacturing and sustainability
- Molecular RoboticsSelf-assembling molecules that can be programmed like robots to carry out specific tasks without requiring power
- Synthetic BiologyBreakthrough approaches to reading, writing, and editing nucleic acids and proteins for multiple applications, varying from healthcare to data storage
- Technology Areas
- 3D Printing
- Actuators
- Biomarker
- Building Materials
- Cell Therapy
- Diagnostics
- Disease Model
- DNA Nanostructures
- Drug Development
- Filtration & Separation
- Gene Circuits
- Imaging
- Immunotherapy
- Medical Devices
- Microbiome
- Microfabrication
- Microfluidics
- Microsystems
- Nanodevices
- Organs on Chips
- Robots
- Sensors
- Surface Coatings
- Therapeutics
- Vaccines
- Wearable Devices
- Disciplines
- Aging
- Architecture
- Biochemistry
- Bioinformatics
- Biotechnology
- Cell Biology
- Chemical Engineering
- Chemistry
- Computer Science
- Control
- Design
- Electrical Engineering
- Genetics
- Genome Engineering
- Immune Engineering
- Materials Science
- Mechanical Engineering
- Mechanobiology
- Medicine
- Microtechnology
- Nanobiotechnology
- Nanotechnology
- Pharmacology
- Physics
- Physiology
- Polymer Chemistry
- Regenerative Medicine
- Robotics
- Self Assembly
- Stem Cell Engineering
- Surgery
- Synthetic Biology
- Tissue Engineering
- Toxicology
- Application Areas
- Anti-aging
- Apparel
- Bacteria
- Balance & Motor Control
- Brain Disease
- Cancer
- Diabetes
- Drug Development
- Energy
- Fundamental Research
- Heart Disease
- Hemostasis
- Infectious Disease
- Inflammatory Diseases
- Intestinal Disease
- Kidney Disease
- Liver Disease
- Lung Disease
- Manufacturing
- Motor Control
- Personalized Medicine
- Rehabilitation
- Sepsis
- Stroke
- Sustainability
- Targeted Drug Delivery
- Toxicology
- Water
- Women's Health
0 Results for No Current Selection
-
Audio/PodcastBIOS Podcast – Biologically Inspired Engineering w/ Don Ingber – Founding Director at the Wyss InstituteDon Ingber is the Founding Director of the Wyss Institute for Biologically Inspired Engineering at Harvard University, the Judah Folkman Professor of Vascular Biology at Harvard Medical School and the Vascular Biology Program at Boston Children’s Hospital, and Professor of Bioengineering at the Harvard John A. Paulson School of Engineering and Applied Sciences. He received...
-
Video/AnimationFrontier Science #10: Bioelectrics w/ Michael LevinMichael Levin, a Wyss Associate Faculty member and a Distinguished Professor in the Biology department at Tufts, holds the Vannevar Bush endowed Chair and serves as director of the Allen Discovery Center at Tufts and the Tufts Center for Regenerative and Developmental Biology. Recent honors include the Scientist of Vision award and the Distinguished Scholar...
-
Audio/PodcastImmunoengineering with Dave Mooney – BIOS PodcastWyss Core Faculty member Dave Mooney is a leader in the fields of biomaterials, mechanotransduction, drug delivery, tissue engineering and immunoengineering. He is interested in understanding how cells sense signals in their environment and how this alters cell behavior. His laboratory develops biomaterials that exploit these signals to regulate specific cells and their function. They...
-
Video/AnimationJoin Our Community of Practical Dreamers: 2022 EditionAre you a collaborative, impact-focused problem solver who wants to be part of a dynamic team dedicated to creating and commercializing technology solutions for healthcare and sustainability? Join our Wyss community! Visit Wyss Careers to learn more and discover career opportunities at the Wyss Institute.
-
Video/AnimationJanus Tough Adhesives for Tendon RepairThere is a large unmet need for tendon regeneration therapies after injury. Building upon the tough gel adhesive technologies developed at the Wyss Institute at Harvard University and the Harvard School of Engineering and Applied Sciences, researchers from these institutions collaborated with a group at Novartis to create the Janus Tough Adhesives (JTAs). This two-sided...
-
Video/AnimationXenobots 3.0: Living Robots That Can ReproduceOn Wednesday, December 1, 2021, the scientists behind the Xenobots participated in a live webinar to discuss their research. The panel consisted of Associate Faculty member Mike Levin Ph.D., Sam Kriegman Ph.D., Josh Bongard Ph.D., and Doug Blackiston Ph.D. Answers to the many audience questions asked during the webinar that panelists did not have time...
-
Video/AnimationSoft Robots Aiding the Elderly and People with Physical ImpairmentsAn interdisciplinary team at Harvard University School of Engineering and the Wyss Institute at Harvard University is building soft robots for older adults and people with physical impairments. Examples of these robots are the Assistive Hip Suit and Soft Robotic Glove, both of which have been included in the 2021-2022 Smithsonian Institution exhibit entitled “FUTURES.”...
-
Audio/PodcastOf Mice and Massage with Dr. Bo Ri SeoYou know those people who say you can’t change tissue? Well Wyss Postdoctoral Fellow Bo Ri Seo explains otherwise on this episode of BodyTalk. She is the lead writer on an exciting paper. Dr. Bo Ri Seo is a biomedical engineer who has been studying mechanobiology and mechanotherapy to develop therapeutic strategies for cancer and...
-
Video/Animation2021 Kabiller Prize in Nanoscience and NanomedicineDavid R. Walt, a Wyss Core Faculty member, member of the faculty at Harvard Medical School in the Department of Pathology, and a Howard Hughes Medical Institute Professor, is the winner of the 2021 Kabiller Prize in Nanoscience and Nanomedicine, the world’s largest monetary award for outstanding achievement in the field of nanotechnology and its...
-
Audio/PodcastTranslating SynBio with Jim CollinsThe BIOS Podcast by Alix Ventures features experts and thought leaders in healthcare & life sciences. We bring you cutting-edge insights from executives, investors, founders, scientists, academics, and more. BIOS is a community of early stage healthcare and life sciences founders and investors. It is anchored by Alix Ventures, a San Francisco-based venture fund that invests in early stage...
-
Video/AnimationeToehold: an RNA-detecting control element for use in RNA therapeutics, diagnostics and cell therapiesThis animation shows an example of an eToehold that detects and signals the presence of a specific viral RNA in a human cell. After the virus has injected its RNA into a host cell, the RNA acts as a “trigger RNA” by binding to a complementary sequence within the eToehold specifically engineered for its detection....
-
Video/AnimationDNA Nanoswitch CalipersThe world’s tiniest ruler for biomolecules has been created by researchers at the Wyss Institute at Harvard University, Harvard Medical School, and Boston Children’s Hospital. DNA Nanoswitch Calipers can measure very small peptides to better understand their structure and function, and enable them to be quickly identified in mixed samples. These insights could lead to...