Discipline: Genome Engineering
118 Results for 'Genome Engineering'
- Technologies (7)
- Collaborations (0)
- Team (0)
- News (90)
- Events (0)
- Multimedia (21)
- Publications (0)
- Jobs (0)
Technologies 7
-
CogniXense for Rare Disease Drug Discovery
Unravel Biosciences has licensed a Wyss drug discovery platform technology to identify and create drugs to treat complex central nervous system disorders, starting with Rett syndrome. -
SomaCode: Getting Cell Therapies Where They Need to Go
SomaCode is solving the problem of cell therapy delivery by identifying unique molecular “zip codes” for disease and engineering cells to home to those zip codes, making cell therapies safer and more effective. -
CogniXense: A Platform for Rapid Drug Repurposing
CogniXense is a target-agnostic drug discovery platform that enables the repurposing of drugs for rare genetic diseases in record time. By combining human data-based computational drug prediction with on-demand animal model development, we can mimic the diversity of symptoms of patient populations and begin drug screening on new diseases within a month. -
Synthetic AAV Capsids for Advanced Gene Therapy
The protein shell (capsid) of Adeno-associated viruses (AAV) are presently the most promising delivery vehicles for various in vivo gene therapies. AAVs are non-pathogenic and, through past engineering efforts, have become safe due to their inability to integrate into and damage the genome of target cells. Rather, the delivered DNA containing a therapeutic gene of... -
Gene Drives
Since the 1940s, researchers have thought of using gene drives to eradicate populations of pests and disease vectors, and to reduce or eliminate invasive species that wreak havoc on natural ecosystems. The idea of a gene drive stems from nature itself, where in sexually reproducing organisms a certain version of a gene is preferentially passed... -
Bioplastics
Humans have produced roughly 8,300 million metric tons of plastic since the 1950s, the vast majority of which has been thrown out as waste. Only about 9% of that plastic waste has been recycled and 12% has been incinerated, leaving 79% of it to accumulate on our land and oceans, harming the environment, the food...
News 90
Multimedia 21
-
Video/AnimationSomaCode: GPS for Cell TherapyJust like zip codes help drivers navigate to specific addresses using a GPS system, the molecular ‘zip codes’ identified via the SomaCode platform can be used to deliver cell therapies to their specific targets in the human body, increasing the therapies’ efficacy and reducing side effects. Credit: Wyss Institute at Harvard University
-
Video/AnimationCogniXense: Speeding Up Treatments for Rare DiseasesAt the Wyss Institute, we are tackling Rett syndrome, a rare disease that affects 1 out of 9,000 children, by developing a scalable model for neurodevelopmental and cognitive diseases. This model can test drugs to see which will improve memory, learning, and behavior, with the end goal of finding effective therapies. Credit: Wyss Institute at...
-
Video/AnimationAAV Capsid EngineeringWyss researchers have created a high-throughput platform to generate an Adeno-associated virus 2 (AAV2) library containing 200,000 variants, each carrying a distinct mutation in the virus capsid protein. Their analysis identified capsid changes that enhanced “homing” potential to specific organs in mice and virus viability, as well as a new protein hidden in the capsid-encoding...
-
Video/AnimationEngineered Cross-feeding in Bacterial ConsortiaThrough engineered amino acid cross-feeding, researchers at the Wyss Institute and Harvard Medical School modified multiple bacterial strains to reverse antagonistic interactions and develop symbiotic relationships, resulting in a more balanced consortium and paving the way for future bacteria-based therapeutics. Credit: Wyss Institute at Harvard University
-
Video/AnimationSelf-regenerating bacterial hydrogels as intestinal wound patchesThis animation explains how self-regenerating bacterial hydrogels could be used as adhesive patches to help intestinal wounds heal. Credit: Wyss Institute at Harvard University.
-
Video/AnimationLight-driven fine chemical production in yeast biohybridsWyss Institute Core Faculty member Neel Joshi explains the concept of yeast biohybrids and how they can be used to harvest energy from light to drive the production of fine chemicals. Credit: Wyss Institute at Harvard University