Multimedia search results
28 Results for ''
-
Video/AnimationSmart Thermally Actuating TextilesSmart Thermally Actuating Textiles (STATs) are tightly-sealed pouches that are able to change shape or maintain their pressure even in environments in which the exterior temperature or airflow fluctuates. This soft robotics technology could be developed as novel components of rehabilitation therapies or to prevent tissue damage in hospital bed or wheelchair-bound individuals. Credit: Wyss...
-
Video/AnimationTension PistonsThe Tension Piston, developed at the Wyss Institute and MIT CSAIL, amplifies piston force and increases energy efficiency by using flexible materials to transmit fluid-induced tension. The Tension Piston is able to produce substantially greater force compared to a conventional piston at the same driving pressure. Tension Pistons can be used in pumps, engines, compressors,...
-
Video/AnimationLiquid-Infused Tympanostomy TubesResearchers at the Wyss Institute have developed next-generation tympanostomy tubes with an innovative material design that significantly reduces biofouling, implant size, need for revision surgeries, and promotes drug delivery into the middle ear. Credit: Wyss Institute at Harvard University
-
Video/AnimationAcoustophoretic PrintingHavard researchers have developed acoustophoretic printing, a method that uses 3D printing technology and highly localized sound waves to generate of droplets with defined sizes and a wide range of viscosities.
-
Video/AnimationHAMR: Robotic Cockroach for Underwater ExplorationsThis video shows how the HAMR can transition from land to water, paddle on the surface of water, or sink to the ground to start walking again just as it would on dry land. Credit: Yufeng Chen, Neel Doshi, and Benjamin Goldberg/Harvard University
-
Audio/PodcastDisruptive: Art Advances ScienceIn this episode of Disruptive, Wyss Institute Founding Director Don Ingber and Staff Scientist Charles Reilly discuss their process creating The Beginning, a short film inspired by Star Wars, to better communicate science to the public…and how they made a scientific discovery along the way. To make The Beginning, film industry visual effects and animation...
-
Audio/PodcastEngineering birdsongsResearchers at the Wyss Institute at Harvard University and the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a simple device that mimics complex birdsongs. The device, developed by the group of Wyss Core Faculty member L. Mahadevan, Ph.D., uses air blown through a stretched rubber tube to recreate birdsongs...
-
Video/AnimationSoft Exosuit for Post-stroke Gait Re-trainingThis video explains how exosuit technology, developed at the Wyss Institute for Biologically Inspired Engineering, applied to ankle movements helps patients post-stroke regain a more normal gait. Credit: Wyss Institute at Harvard University
-
Video/Animation3D Printing Ceramic FoamThis video shows the 3D printing process that adds layer upon layer of the foam link to create a 3D porous ceramic honeycomb pattern. This new capability is an important step toward generating porous materials for lightweight structures, thermal insulation, tissue scaffolds and other applications. Credit: Lori Sanders
-
Audio/PodcastDisruptive: Mechanotherapeutics – From Drugs to WearablesMechanobiology reveals insights into how the body’s physical forces and mechanics impact development, physiological health, and prevention and treatment of disease. The emerging field of Mechanotherapeutics leverages these insights towards the development of new types of pharmaceuticals, drug delivery systems, engineered tissues, and wearable therapeutic devices that leverage physical forces or target mechanical signaling pathways...
-
Video/AnimationMechanotherapeutics: From Drugs to WearablesThe Wyss Institute’s 7th annual international symposium focused on advances in the field of Mechanobiology that have resulted in the development of new types of pharmaceuticals, drug delivery systems, engineered tissues, and wearable therapeutic devices that leverage physical forces or target mechanical signaling pathways as a core part of their mechanism of action. Organized by...
-
Video/Animation3D Printing Metal in MidairIn this video, see the laser-assisted method developed by Wyss Core Faculty member Jennifer Lewis that allows metal to be 3D printed in midair. Credit: Lewis Lab / Wyss Institute at Harvard University
-
Video/AnimationSoft Robotic Grippers For Deep-Sea ExplorationIn this video, two types of soft robotic grippers are shown successfully collecting coral samples at the bottom of the Red Sea. The first gripper features opposing pairs of bending actuators, while the second gripper – inspired by the coiling action of a boa constrictor – can access tight spaces and clutch small and irregular...
-
Video/Animation4D Printing: Shapeshifting ArchitecturesA team at the Wyss Institute and Harvard SEAS has developed a new microscale printing method to create transformable objects. These “4D-printed” objects go a step beyond 3D printing to incorporate a fourth dimension: time. The method was inspired by the way plants change shape over time in response to environmental stimuli. This orchid-shaped structure...
-
Video/AnimationJumping on Water: Robotic Water StriderIn this video, watch how novel robotic insects developed by a team of Seoul National University and Harvard scientists can jump directly off water’s surface. The robots emulate the natural locomotion of water strider insects, which skim on and jump off the surface of water. Credit: Wyss Institute at Harvard University
-
Video/AnimationBioinspired Robotics: Softer, Smarter, SaferThe Bioinspired Robotics platform at HarvardÍs Wyss Institute for Biologically Inspired Engineering looks into Nature to obtain insights for the development of new robotic components that are smarter, softer, and safer than conventional industrial robots. By looking at natural intelligence, collective behavior, biomechanics, and material properties not found in manmade systems, scientists at the Wyss...
-
Video/AnimationSoft Robotic GloveThe soft robotic glove under development at the Wyss Institute could one day be an assistive device used for grasping objects, which could help patients suffering from muscular dystrophy, amyotrophic lateral sclerosis (ALS), incomplete spinal cord injury, or other hand impairments to regain some daily independence and control of their environment. This research is partially...
-
Video/AnimationFluid GateIn this video, the fluid-based gating mechanism separates gas and water. The fluid-filled pores system leverages pressurization to control the opening and closing of its liquid gates, making it extremely precise at separating mixed materials. Credit: Wyss Institute at Harvard University
-
Video/AnimationDNA NanoswitchesGel electrophoresis, a common laboratory process, sorts DNA or other small proteins by size and shape using electrical currents to move molecules through small pores in gel. The process can be combined with novel DNA nanoswitches, developed by Wyss Associate Faculty member Wesley Wong, to allow for the simple and inexpensive investigation of life’s most...
-
Video/AnimationBioinspired Blood Repellent CoatingIn this video, Wyss Institute Founding Director Don Ingber, Core Faculty member Joanna Aizenberg, Staff Scientist Dan Leslie and Postdoctoral Fellow Anna Waterhouse explain how a coating they developed using FDA-approved materials could prevent blood clotting in medical devices without the use of blood thinners. Credit: Wyss Institute at Harvard University
-
Video/AnimationKilobots: A Thousand-Robot SwarmIn this video, Kilobots self-assemble in a thousand-robot swarm. The algorithm developed by Wyss Institute Core Faculty member Radhika Nagpal that enables the swarm provides a valuable platform for testing future collective Artificial Intelligence (AI) algorithms. Credit: Harvard School of Engineering and Applied Sciences.
-
Video/AnimationSelf-Folding RobotsIn this video, Wyss Institute Core Faculty member Rob Wood, who is also the Charles River Professor of Engineering and Applied Sciences at Harvard’s School of Engineering and Applied Sciences (SEAS), and SEAS Ph.D. student Sam Felton discuss their landmark achievement in robotics – getting a robot to assemble itself and walk away autonomously –...
-
Video/AnimationSoft Robotic ExosuitIn this video, Harvard faculty member Conor Walsh and members of his team explain how the biologically inspired Soft Exosuit targets enhancing the mobility of healthy individuals and restoring the mobility of those with physical disabilities. This research is partially funded by the National Science Foundation. Note: This technology is currently in the research and...
-
Video/Animation3D Printing: Cellular CompositesMaterials scientists at Harvard University have created lightweight cellular composites via 3D printing. These fiber-reinforced epoxy composites mimic the structure and performance of balsa wood. Because the fiber fillers align along the printing direction, their local orientation can be exquisitely controlled. These 3D composites may be useful for wind turbine, automotive and aerospace applications, where...
-
Video/AnimationChitosan BioplasticIn this video, the team grew a California Blackeye pea plant in soil enriched with its chitosan bioplastic over a three-week period – demonstrating the material’s potential to encourage plant growth once it is returned to the environment. Credit: Wyss Institute at Harvard University
-
Audio/PodcastA Lecture in Cell and Developmental Biology: Mechanobiology and Developmental ControlDonald E. Ingber, Founding Director of the Wyss Institute, Judah Folkman Professor of Vascular Biology at Harvard Medical School, and Professor of Bioengineering at the Harvard School of Engineering and Applied Sciences, talks about his article “Mechanobiology and Developmental Control,” which he wrote with Tadanori Mammoto and Akiko Mammoto for the 2013 Annual Review of...
-
Video/AnimationNew coating turns glass into superglassA transparent new coating makes ordinary glass tough, ultraslippery, and self-cleaning. The coating is based on SLIPS — the world’s slipperiest synthetic substance. Here, a droplet of dyed octane quickly beads up and rolls off a watch glass with the new coating. To learn more, go to Credit: Wyss Institute at Harvard University
-
Video/AnimationRoboBee: Controlled flight of a robotic insectInspired by the biology of a fly, with submillimeter-scale anatomy and two wafer-thin wings that flap at 120 times per second, robotic insects, or RoboBees, achieve vertical takeoff, hovering, and steering. The tiny robots flap their wings using piezoelectric actuators — strips of ceramic that expand and contract when an electric field is applied. Thin...