Technologies search results
11 Results for ''
-
ReConstruct: Vascularized tissue for breast reconstruction and augmentation
ReConstruct is a platform for growing, vascularizing, and implanting patient-derived tissues that enable safer breast reconstruction after cancer surgery. -
Passive Directional Valve Technology: Towards More User-friendly and Accessible Microfluidic Devices for Diagnostic and Research Applications
Passive directional valves enable smaller and more complex microfluidics applications across of broad spectrum of future technologies, including diagnostics, drug development, and tissue engineering. -
Reel Foods: Cultivated fillets of fish for healthier people and planet
Reel Foods leverages cardiac tissue engineering methods developed at the Wyss Institute to generate cultivated fish fillets that are indistinguishable from wild-caught seafood, have a lower carbon footprint than traditional fish production, and are free from contaminants like mercury and PFAS. -
Human Ovarian Organoids to Improve Women’s Health
Gameto is using the Wyss Institute’s fully human ovarian organoid technology to solve the global problem of rising infertility by making IVF safer, cheaper, and more accessible. -
Kidney Engineering Technology for New Tissue Replacement Therapies
Trestle Biotherapeutics licensed 3D bioprinting, and stem cell and kidney organoid engineering methods to help it create kidney repair and replacement therapies. These could become new standard-of-care options beyond dialysis and kidney transplants for patients with kidney failure. -
Bone Marrow-Like Scaffolds for Accelerating Immune Reconstitution
An implantable bone marrow cryogel to accelerate the full reconstitution of the immune system, including T cell immunity, in patients that received chemotherapy and a bone marrow transplant. This could provide an off-the-shelf, material-based solution for patients with severe blood disorders whose immunity is recovering only slowly after treatment. -
Engineered Brain Organoids
The ability to derive and manipulate pluripotent stem cells has opened up new avenues for modeling biological systems in both healthy and diseased conditions. In order to more fully recapitulate the tissue microenvironment with its cell-cell, cell-extracellular matrix, and cell-niche interactions, it is essential to transition stem-cell culturing from monolayers to 3D structures. Self-organization of... -
Focused Rotary Jet Spinning for Heart Implants
Focused rotary jet spinning (FRJS) is a manufacturing technique that can rapidly spin polymers into long fibers that are easily shaped into heart valves for treating a variety of cardiac diseases in children and adults. -
4D Printing of Shapeshifting Devices
Organisms, such as flowers and plants, have tissue compositions and microstructures creating dynamic morphologies that can shapeshift in response to changes in their environments. Researchers at the Wyss Institute have mimicked a variety of such dynamic shape changes like those performed by tendrils, leaves, and flowers in response to changes in humidity or temperature with... -
3D Bioprinting of Living Tissues
The Problem There is a severe shortage of human organs for people who need transplants due to injury or disease: more than 103,000 people are on the waiting list for organs in the US, and it’s estimated that 17 people die waiting for an organ transplant every day. Growing full organs from living human... -
Human Organs-on-Chips
Organ Chips are microfluidic devices lined with living human cells for drug development, disease modeling, and personalized medicine. Launched in 2014, Wyss startup Emulate, Inc., is leveraging the Wyss Institute’s Organ Chip technology to mimic human organs in vitro, enabling faster, better, and cheaper drug development and insights into human health.