Multimedia search results
25 Results for ''
-
Video/AnimationProgress, Potential, and Possibilities with Luba Perry, Ph.D. – Bioengineered Breast Reconstruction And AugmentationEach episode of this podcast includes a discussion with fascinating people designing a better tomorrow. Luba Perry, Ph.D. is Co-Founder and CEO of ReConstruct Bio, an innovative venture emerging from Harvard’s Wyss Institute, aimed at redefining the fields of medical reconstruction and aesthetics with an initial application of their groundbreaking technology on breast reconstruction and...
-
Video/AnimationReimagine the World – Volume 4 – ReConstruct EditionDenise Skok, a two-time breast cancer survivor, Luba Perry, a scientist at the Wyss Institute, and Samuel Lin, a plastic surgeon collaborating with the Wyss Institute, are all working to reimagine a world where breast cancer patients have better reconstruction options. The ReConstruct project at the Wyss Institute uses adipose tissue assembled from a patient’s...
-
Video/AnimationReConstruct – 3D Bioprinted Vascularized Fat Tissues for Breast ReconstructionBreast cancer affects 15% of all women. Current options for breast reconstruction are insufficient and have poor patient outcomes. A research team at the Wyss Institute is addressing this clinical need by fabricating vascularized adipose tissue flaps for therapeutic use. Credit: Wyss Institute at Harvard University
-
Video/AnimationPhonoGraft: Programming the eardrum to repair itselfEardrum perforations are a widespread problem affecting millions worldwide. Current standard of care is invasive, involves harvesting an autologous tissue to patch the eardrum, and often requires to revision surgeries, while hearing outcomes remain unsatisfying. What if we could program the eardrum to repair itself after injury? Researchers at the Wyss Institute, Massachusetts Eye and...
-
Video/AnimationVoxelated Soft Matter via Multimaterial, Multinozzle 3D PrintingMultimaterial Multinozzle 3D (MM3D) Printing, a new technique developed by engineers at the Wyss Institute and Harvard SEAS, allows seamless switching between up to eight different materials within a single nozzle, allowing for the creation of complex 3D objects in a fraction of the time required by other extrusion-based 3D printing methods. Credit: Wyss Institute...
-
Audio/PodcastDisruptive: 3D BioprintingThere are roughly 120,000 people in the United States on waiting lists for live-saving organ transplants, with only about 30,000 transplants happening every year. To address this great challenge of organ shortages, a team at the Wyss Institute led by Core Faculty member Jennifer Lewis, Sc.D., is developing a method for 3D bioprinting organ tissues...
-
Video/AnimationA Swifter Way Towards 3D-printed Organs20 people die waiting for an organ transplant every day in the US, but lab-grown organs so far lack the cellular density and functions required to make them viable replacements. The new SWIFT method from the Wyss Institute and Harvard SEAS solves those problems by 3D printing vascular channel networks directly into living tissue constructs,...
-
Video/AnimationKidney Organiods: Flow-Enhanced Vascularization and Maturation In VitroThis video explains how the collaborative project created vascularized kidney organoids and how they advance the field of tissue engineering. Credit: Wyss Institute at Harvard University.
-
Video/AnimationAcoustophoretic PrintingHavard researchers have developed acoustophoretic printing, a method that uses 3D printing technology and highly localized sound waves to generate of droplets with defined sizes and a wide range of viscosities.
-
Video/AnimationThis is Your Brain on ChipsHow do you study something as complex as the human brain? Take it apart. Wyss researchers have created Organ Chips that mimic the blood-brain barrier and the brain and, by linking them together, discovered how our blood vessels and our neurons influence each other. Credit: Wyss Institute at Harvard University
-
Video/AnimationNew Wyss Institute Initiative – 3D Organ EngineeringWyss Institute Core Faculty members Christopher Chen and Jennifer Lewis describe the Wyss Institute’s new initiative focused on organ engineering, which leverages our expertise in biomaterials, tissue engineering, three dimensional biofabrication, and stem cell development.
-
Video/AnimationTherapeutic Organ Engineering: Highlights From The 8th Annual Wyss SymposiumThe 8th Annual Wyss International Symposium focused on innovations in therapeutic organ engineering, featuring diverse speakers doing exciting work in 3D organ engineering, materials fabrication, and vascular integration. This video highlights some of the themes discussed in their presentations as well as the advances that are leading to the ultimate goals of developing new approaches...
-
Audio/PodcastHow 3D Bioprinting Could Revolutionize Organ ReplacementHow 3D Bioprinting Could Revolutionize Organ Replacement was originally broadcast on WBUR on November 22, 2017. This story features Wyss Core Faculty member Jennifer Lewis. The original broadcast story can be found here.
-
Video/Animation8th Annual Wyss Institute Symposium: Therapeutic Organ EngineeringScreened just before the symposium opening, this animation artistically connects concepts of therapeutic organ engineering presented during the event. Credit: Wyss Institute at Harvard University
-
Video/AnimationShear-Thinning Biomaterial: Catheter InjectionThis movie shows the solid state of the shear-thinning biomaterial immediately after release from the catheter into an aqueous solution (00:04). The STB is cohesive and remains as one solid piece throughout the injection process. There is no noticeable dissolution of the STB into the solution, suggesting it is stable immediately after being discharged from...
-
Video/Animation3D Printed Heart-on-a-ChipIn this video, learn how Wyss Institute and Harvard SEAS researchers have created a 3D-printed heart-on-a-chip that could lead to new customizable devices for short-term and long-term in vitro testing. Credit: Johan U. Lind (Disease Biophysics Group), Alex D. Valentine and Lori K. Sanders (Lewis Lab)/Harvard University
-
Video/AnimationBioprinting: The Kidney’s Proximal TubulesIn this video, see how the Wyss Institute team has advanced bioprinting to the point of being able to fabricate a functional subunit of a kidney. Credit: Wyss Institute at Harvard University
-
Audio/PodcastSynthetic Stingray May Lead To A Better Artificial HeartSynthetic Stingray May Lead To A Better Artificial Heart was originally broadcast on NPR’s All Things Considered on July 7, 2016. This story features Wyss Core Faculty member Kit Parker. The original broadcast story can be found here.
-
Video/AnimationPrinting Vascular TissuePrinting vessel vasculature is essential for sustaining functional living tissues. Until now, bioengineers have had difficulty building thick tissues, lacking a method to embed vascular networks. A 3D bioprinting method invented at the Wyss Institute and Harvard SEAS embeds a grid of vasculature into thick tissue laden with human stem cells and connective matrix. Printed...
-
Video/AnimationHuman Organs-On-ChipsWyss Institute researchers and a multidisciplinary team of collaborators have engineered microchips that recapitulate the microarchitecture and functions of living human organs, including the lung, intestine, kidney, skin, bone marrow and blood-brain barrier. These microchips, called ‘organs-on-chips’, offer a potential alternative to traditional animal testing. Each individual organ-on-chip is composed of a clear flexible polymer...
-
Video/AnimationBioprinting: Building in Blood VesselsBuilding in blood vessels. Then they addressed a big challenge in tissue engineering: embedding 3D vascular networks. They developed a ‘fugitive’ ink that can easily be printed, then suctioned off to create open microchannels that can then be populated with blood-vessel-lining cells to allow blood to flow. Read more: wyss.harvard.edu/viewpressrelease/141 Credit: Wyss Institute at Harvard...
-
Video/AnimationBioprinting: Building with Bio-InksBuilding with bio-inks. Using their custom-built printer, the fugitive ink for the vasculature, and other biological inks containing extracellular matrix and human cells, the researchers printed a 3D tissue construct. Credit: Wyss Institute at Harvard University
-
Video/AnimationBioprinting: Building Intricate StructuresBuilding intricate structures. The team first designed a custom printer that can precisely co-print multiple materials in 3D to create intricate heterogeneous patterns. Credit: Wyss Institute at Harvard University
-
Video/AnimationMeTro HydrogelsAn international team led by the Wyss Institute recently used microfabrication techniques to design a new micropatterned hydrogel that shows great promise for tissue engineering — cardiac tissue in particular. It incorporates an elastic protein called tropoelastin, which is found in all elastic human tissues. The Wyss Institute’s Ali Khademhosseini discusses the research. Credit: Wyss...
-
Video/AnimationIntroduction to Organs-on-a-ChipWhat if we could test drugs without animal models? Wyss Institute researchers and a multidisciplinary team of collaborators have engineered microchips that recapitulate the microarchitecture and functions of living human organs, including the lung, intestine, kidney, skin, bone marrow and blood-brain barrier. These microchips, called ‘organs-on-chips’, offer a potential alternative to traditional animal testing. Each...