Search results
20 Results for 'Assistive Devices'
- Technologies (5)
- Collaborations (0)
- Team (0)
- News (11)
- Pages (0)
- Multimedia (4)
- Publications (0)
- Jobs (0)
- Events (0)
Technologies 5
-
Wearable Technology for True Movement Quantification
WurQ combines wearable sensors, with deep learning and signal processing algorithms, to assess the amount, quality, and intensity of functional movements and strength training activities. This quantitative data enables feedback, guidance, and gamification at scale to improve users fitness routines and health. -
Low-Cost Tactile Displays for the Blind and Visually Impaired
Age-related medical conditions are responsible for most cases of blindness and visual impairment worldwide. In 2015, there were an estimated 36 million blind people in the world, with an additional 217 million suffering from moderate to severe vision impairment. Over 80% of the visually impaired were older than 50, and this percentage is expected to... -
Flexible Embedded Liquid Sensors
As we shift from carrying electronic devices in our pockets and purses to wearing them on our bodies, those devices need to be able to move and stretch with us, and to sense our movements in order to better do so. Such sensors must remain functional when stretched to several times their resting length, resist... -
Soft Robotic Shoulder Support for Stroke Rehabilitation
The majority of stroke survivors have difficulty using their affected arm in everyday life. Commercial rehabilitation robots exist, but most are expensive, rigid, non-portable exoskeletons that can only be used in clinical rehabilitation settings. Portable devices could considerably increase the frequency and amount of robotic therapy, maximizing the recovery possible for patients with arm impairments.... -
Soft Exosuits for Lower Extremity Mobility
Our lower-extremity soft exosuit is made of light, flexible fabrics that move with the wearer like clothing, and apply precisely timed assistive forces to a patient's ankles to improve their walking and mobility. This technology was licensed by ReWalk Robotics, which has commercialized it as the ReStore™ for stroke rehabilitation.
News 11
Multimedia 4
-
Video/AnimationThe Human Mind and Gait ControlResearchers study how our brains adjust to changes in our walking strides, gaining insights that could be used to develop better physical rehabilitation programs. Credit: Wyss Institute
-
Video/AnimationSoft Fabric SensorsThis textile-based sensor effectively registers fine motor movements of the human body, taking researchers one step closer to creating soft, wearable robots. Credit: Wyss Institute at Harvard University
-
Video/AnimationSoft Exosuit for RunningBuilding upon previous soft exosuit technology, researchers at the Wyss Institute and Harvard SEAS have developed a soft exosuit for running. This exosuit applies forces to the hip joint using thin, flexible wires, assisting the muscles during each stride. Using an off-board actuation system, compared to not wearing the exosuit, this exosuit can reduce the...
-
Video/AnimationHow Humans Walk…With RobotsResearchers at the Wyss Institute and Spaulding Rehabilitation Hospital shed light on how humans respond – or do not respond – to forces applied by rehabilitative robots. Credit: Wyss Institute at Harvard University