Multimedia search results
20 Results for ''
-
Video/AnimationFeCILL: Reimagining How We Treat the Sickest PatientsOpportunistic fungal infections usually only affect patients whose immune systems are compromised, but when they do, they are often deadly – the mortality rate for these infections can be as high as 25%. Existing antifungal treatments have high levels of toxicity, and can harm the patient more than they help. Researchers at the Wyss Institute...
-
Video/AnimationMetabolic T cell Labeling: simple and effective enhancement of therapeutic T cells with immune-stimulating cytokinesThis animation shows how the surface of patient-derived T cells is metabolically labeled with azido-sugar molecules that then can be used to attach immune-enhancing cytokines with the help of click chemistry. The approach could help expand adoptive T cell therapies to treatment of solid tumors. Credit: Wyss Institute at Harvard University
-
Audio/PodcastImmunoengineering with Dave Mooney – BIOS PodcastWyss Core Faculty member Dave Mooney is a leader in the fields of biomaterials, mechanotransduction, drug delivery, tissue engineering and immunoengineering. He is interested in understanding how cells sense signals in their environment and how this alters cell behavior. His laboratory develops biomaterials that exploit these signals to regulate specific cells and their function. They...
-
Video/AnimationJanus Tough Adhesives for Tendon RepairThere is a large unmet need for tendon regeneration therapies after injury. Building upon the tough gel adhesive technologies developed at the Wyss Institute at Harvard University and the Harvard School of Engineering and Applied Sciences, researchers from these institutions collaborated with a group at Novartis to create the Janus Tough Adhesives (JTAs). This two-sided...
-
Video/AnimationOMNIVAX: Infection Vaccine PlatformThis video explains how OMNIVAX – an immuno-material-based vaccine technology can be used to rapidly create injectable vaccines against diverse viral and bacterial pathogens, and how the platform is used by the team to develop a vaccine against recurring urinary tract infections (UTIs) in their lead human application. Credit: Wyss Institute at Harvard University.
-
Video/AnimationAlginate Hydrogel for AngiogenesisThis video describes how an alginate hydrogel can be used to trigger the formation of new blood vessels at an ischemic site in the body. Credit: Wyss Institute at Harvard University.
-
Video/AnimationTough Gel AdhesivesInspired by the mucus secreted by the Dusky Arion slug, researchers at the Wyss Institute have developed a surgical adhesive that can adhere to wet and dynamic surfaces inside the body, including the heart, lung, tendons, cartilage, and bone. Coupled with a novel tough hydrogel, which can undergo huge amounts of deformation without breaking, this...
-
Video/AnimationTherapeutic Organ Engineering: Highlights From The 8th Annual Wyss SymposiumThe 8th Annual Wyss International Symposium focused on innovations in therapeutic organ engineering, featuring diverse speakers doing exciting work in 3D organ engineering, materials fabrication, and vascular integration. This video highlights some of the themes discussed in their presentations as well as the advances that are leading to the ultimate goals of developing new approaches...
-
Audio/PodcastDisruptive: Cancer Vaccine and Immuno-MaterialsImmunotherapy – treatment that uses the body’s own immune system to help fight disease – has groundbreaking and life-saving implications. In an effort to make immunotherapy more effective, Wyss Institute researchers are developing new immuno-materials, which help modulate immune cells to treat or diagnose disease. In this episode of Disruptive, Dave Mooney, Wyss Core Faculty...
-
Video/Animation8th Annual Wyss Institute Symposium: Therapeutic Organ EngineeringScreened just before the symposium opening, this animation artistically connects concepts of therapeutic organ engineering presented during the event. Credit: Wyss Institute at Harvard University
-
Audio/PodcastSlug Slime Inspires Scientists To Invent Sticky Surgical GlueSlug Slime Inspires Scientists To Invent Sticky Surgical Glue was originally broadcast on NPR’s All Things Considered on July 27, 2017. This story features Wyss Institute Technology Development Fellow Jianyu Li. The original broadcast story can be found here.
-
Video/AnimationWyss Focus: Immuno-MaterialsWyss Core Faculty, Dave Mooney, explains our new Immuno-Materials Focus Area, which adds a new dimension to immunotherapy in that it harnesses materials to make treatments more efficient and effective. These material-based systems are capable of modulating immune cells and releasing them into the body where they can treat diseases.
-
Audio/PodcastDavid and Mary Mooney: Seeing Is Believing-Therapeutic Cancer VaccinesWyss Core Faculty member David Mooney presents a talk with Mary Mooney, titled Seeing Is Believing: Therapeutic Cancer Vaccines. Marshalling a patient’s immune system to recognize and destroy cancerous cells is an exciting strategy to attack cancer, and this talk will explore materials that engage the immune system through science and artistic representation. Mary K....
-
Video/AnimationArtScience Talks @ Le Lab – Seeing Is Believing: Therapeutic Cancer VaccinesWyss Core Faculty member David Mooney presents a talk with Mary Mooney, titled Seeing Is Believing: Therapeutic Cancer Vaccines. Marshaling a patientÍs immune system to recognize and destroy cancerous cells is an exciting strategy to attack cancer, and this talk will explore materials that engage the immune system through science and artistic representation. Mary K....
-
Video/AnimationSoft Robotic Heart Sleeve: In VitroReplicating heart pressure and contraction in vitro, the soft robotic heart sleeve with actuators arranged around a fluid-filled sac is able to rhythmically contract to each time pump a defined fluid volume into the attached tubing. Credit: Harvard SEAS
-
Audio/PodcastDisruptive: Mechanotherapeutics – From Drugs to WearablesMechanobiology reveals insights into how the body’s physical forces and mechanics impact development, physiological health, and prevention and treatment of disease. The emerging field of Mechanotherapeutics leverages these insights towards the development of new types of pharmaceuticals, drug delivery systems, engineered tissues, and wearable therapeutic devices that leverage physical forces or target mechanical signaling pathways...
-
Audio/PodcastDisruptive: Cancer Vaccine & Hydrogel Drug DeliveryIn this episode of Disruptive, Wyss Founding Core Faculty Member Dave Mooney discusses programmable nanomaterials approaches to fighting disease. Mooney explains how a cancer vaccine, developed by his team and currently in a clinical trial at the Dana-Farber Cancer Institute, can train one’s own immune system to target specific cancer cells. He also describes the...
-
Video/AnimationImplantable Cancer VaccineThis animation explains how the Wyss Institute cancer vaccine technology developed in collaboration with biologists, clinicians and researchers at the Institute, the Dana-Farber Cancer Institute and Harvard’s School of Engineering and Applied Sciences works by reprogramming the immune system to reject cancer cells. Credit: Wyss Institute at Harvard University
-
Video/AnimationTough GelA team at the Wyss Institute is honing a tough, rubbery hydrogel initially developed at Harvards School of Engineering and Applied Sciences. The gel is 90 percent water, yet it stretches without breaking to more than 20 times its original length and recoils like rubber, the researchers first reported in Nature in 2012. In fact,...
-
Video/AnimationIntroduction to Implantable Cancer VaccineWhat if we could prevent and treat cancer with a simple vaccine? Credit: Wyss Institute at Harvard University