Multimedia search results
31 Results for ''
-
Video/AnimationMice Don’t Menstruate: Reimagining Women’s Health Using Organ Chips with Dr. Donald IngberIn this episode, host Sharon Kedar, Co-Founder of Northpond Ventures, is joined by Dr. Donald Ingber, Founding Director at Wyss Institute for Biologically Inspired Engineering at Harvard University. Dr. Ingber’s commitment to following his passion has led him to countless medical and technological breakthroughs, including Organ Chip technology. These incredible chips recreate the structure and...
-
Video/AnimationAtlantic Health Research Spotlight: Finding Balance in Bipolar Disorder Through Drug Prediction and Organoid-Based Drug ScreeningInnovation has disrupted care as we know it. Challenges with access, complex diseases, and care delivery persist, but so do areas of opportunity for emerging tech and discoveries. The Atlantic explored gene editing, artificial intelligence, climate change, weight-loss and diabetes treatments, and more at their Annual Health Summit. The Wyss’ Director of Synthetic Biology, Jenny...
-
Audio/PodcastReimagining Infertility – An Interview with Christian KrammeChristian Kramme imagines a world where all people can have a child on their own time frame. Such “reproductive autonomy” is not the case today – infertility is a growing problem worldwide, and existing treatments like IVF are incredibly taxing on women’s bodies and too expensive for most of the global population to access. Listen...
-
Video/AnimationMetabolic T cell Labeling: simple and effective enhancement of therapeutic T cells with immune-stimulating cytokinesThis animation shows how the surface of patient-derived T cells is metabolically labeled with azido-sugar molecules that then can be used to attach immune-enhancing cytokines with the help of click chemistry. The approach could help expand adoptive T cell therapies to treatment of solid tumors. Credit: Wyss Institute at Harvard University
-
Video/AnimationThe Vagina Chip: A New Preclinical Model for Research on Vaginal Epithelium Microbiome InteractionsThe Vagina Chip allows researchers to study a human model of the vaginal microbiome and develop new treatments for bacterial vaginosis and other conditions that threaten women’s health. Credit: Research Square
-
Audio/PodcastPreventing the Next Pandemic with Organ ChipsIn search for strategies to curb pandemics, scientists strive to understand how pathogens slip past the immune system and wreak havoc on the body. To achieve this goal, researchers study viral infection in models that mimic how different cell types interact with each other, the immune system, or the environment. Organ-on-a-chip models combine tissue engineering...
-
Video/AnimationJanus Tough Adhesives for Tendon RepairThere is a large unmet need for tendon regeneration therapies after injury. Building upon the tough gel adhesive technologies developed at the Wyss Institute at Harvard University and the Harvard School of Engineering and Applied Sciences, researchers from these institutions collaborated with a group at Novartis to create the Janus Tough Adhesives (JTAs). This two-sided...
-
Video/AnimationMucus Layer In Vitro on Human Colon ChipUsing Human Organ Chips, researchers at the Wyss Institute were able to generate the mucus layer of the colon in vitro, which has never been done before. In the colon, the mucus layer protects intestinal epithelial cells against inflammatory stimuli such as pathogens, damaged cells, or irritants. The ability to support mucus-producing cells is one...
-
Video/AnimationPhonoGraft: Programming the eardrum to repair itselfEardrum perforations are a widespread problem affecting millions worldwide. Current standard of care is invasive, involves harvesting an autologous tissue to patch the eardrum, and often requires to revision surgeries, while hearing outcomes remain unsatisfying. What if we could program the eardrum to repair itself after injury? Researchers at the Wyss Institute, Massachusetts Eye and...
-
Video/AnimationBeating Back the CoronavirusWhen the coronavirus pandemic forced Harvard University to ramp down almost all on-site operations, members of the Wyss Institute community refocused their teams, and formed new ones, in order to fight COVID-19 on its multiple fronts. These efforts include building new pieces of personal protective equipment that were delivered to frontline healthcare workers, developing new...
-
Video/AnimationCogniXense: Speeding Up Treatments for Rare DiseasesAt the Wyss Institute, we are tackling Rett syndrome, a rare disease that affects 1 out of 9,000 children, by developing a scalable model for neurodevelopmental and cognitive diseases. This model can test drugs to see which will improve memory, learning, and behavior, with the end goal of finding effective therapies. Credit: Wyss Institute at...
-
Video/AnimationA Swifter Way Towards 3D-printed Organs20 people die waiting for an organ transplant every day in the US, but lab-grown organs so far lack the cellular density and functions required to make them viable replacements. The new SWIFT method from the Wyss Institute and Harvard SEAS solves those problems by 3D printing vascular channel networks directly into living tissue constructs,...
-
Video/AnimationLiquid-Infused Tympanostomy TubesResearchers at the Wyss Institute have developed next-generation tympanostomy tubes with an innovative material design that significantly reduces biofouling, implant size, need for revision surgeries, and promotes drug delivery into the middle ear. Credit: Wyss Institute at Harvard University
-
Video/AnimationKidney Organiods: Flow-Enhanced Vascularization and Maturation In VitroThis video explains how the collaborative project created vascularized kidney organoids and how they advance the field of tissue engineering. Credit: Wyss Institute at Harvard University.
-
Video/AnimationPodocyte Cells: Kidney-on-a-ChipThis video shows a 3-dimensional rendering of the glomerulus-on-a-chip with human stem cell-derived mature podocytes (in green) grown and differentiated in one channel (shown on top) and that extend their processes through the modeled glomerulus basement membrane towards glomerular vascular cells (in magenta) in the parallel running channel (shown on the bottom). Credit: Wyss Institute...
-
Video/Animation3D Printed Heart-on-a-ChipIn this video, learn how Wyss Institute and Harvard SEAS researchers have created a 3D-printed heart-on-a-chip that could lead to new customizable devices for short-term and long-term in vitro testing. Credit: Johan U. Lind (Disease Biophysics Group), Alex D. Valentine and Lori K. Sanders (Lewis Lab)/Harvard University
-
Video/AnimationSmoking Human Lung Small Airway-on-a-ChipIn this video, Wyss Founding Director Donald Ingber and Technology Development Fellow Kambez Benam explain how the integrated smoking device mimics normal cigarette smoke exposure and how it can impact research into the causes of COPD and into new biomarkers and therapeutics. Credit: Wyss Institute at Harvard University
-
Video/AnimationBioprinting: The Kidney’s Proximal TubulesIn this video, see how the Wyss Institute team has advanced bioprinting to the point of being able to fabricate a functional subunit of a kidney. Credit: Wyss Institute at Harvard University
-
Video/AnimationSmall Airway-on-a-Chip: Modeling COPD and AsthmaDevelopment of new therapeutics for chronic lung diseases have been hindered by the inability to study them in vitro. To address this challenge, Wyss Institute researchers used their Organ-on-a-Chip technology to produce a microfluidic ‘human lung small airway-on-a-chip.’ The device, which is composed a clear rubber material, is lined by living Human lung small airway...
-
Video/AnimationPathogen-Extracting Sepsis TherapyThis video explains how sepsis induced by an overload of blood pathogens can be treated with the Wyss Institute’s improved pathogen-extracting, spleen-mimicking device. Blood is flown through a cartridge filled with hollow fibers that are coated with a genetically engineered blood protein inspired by a naturally-occurring human molecule called Mannose Binding Lectin (MBL). MBL is...
-
Video/AnimationGastrointestinal Re-ProgrammingIn this animation, see an example of how genetically engineered microbes being developed by researchers at the Wyss Institute could detect and treat a wide range of gastrointestinal illnesses and conditions. Credit: Wyss Institute at Harvard University
-
Video/AnimationAntibiotic EfficacyIn this video, Wyss Institute Core Faculty member James Collins and Michael Lobritz explain how antibiotics can have vastly different effects on pathogenic bacteria and suggest potential implications for improving antibiotic treatments in infected patients. Credit: Wyss Institute at Harvard University
-
Video/AnimationCas9: As a Transcriptional ActivatorIn this technical animation, Wyss Institute researchers instruct how they engineered a Cas9 protein to create a powerful and robust tool for activating gene expression. The novel method enables Cas9 to switch a gene from off to on and has the potential to precisely induce on-command expression of any of the countless genes in the...
-
Video/AnimationHuman Organs-On-ChipsWyss Institute researchers and a multidisciplinary team of collaborators have engineered microchips that recapitulate the microarchitecture and functions of living human organs, including the lung, intestine, kidney, skin, bone marrow and blood-brain barrier. These microchips, called ‘organs-on-chips’, offer a potential alternative to traditional animal testing. Each individual organ-on-chip is composed of a clear flexible polymer...
-
Video/AnimationGene Editing Mechanism of CRISPR-Cas9In this animation, learn how CRISPR-Cas9 gene editing technology can be used to precisely disrupt and modify specific genes. Credit: Wyss Institute at Harvard University.
-
Video/AnimationBioinspired Blood Repellent CoatingIn this video, Wyss Institute Founding Director Don Ingber, Core Faculty member Joanna Aizenberg, Staff Scientist Dan Leslie and Postdoctoral Fellow Anna Waterhouse explain how a coating they developed using FDA-approved materials could prevent blood clotting in medical devices without the use of blood thinners. Credit: Wyss Institute at Harvard University
-
Audio/PodcastCyborg Microchip MedicineThis edition of Revolutions focuses on Cyborg Microchip Medicine. Dr Don Ingber, Director of the Wyss Institute for Biologically Inspired Engineering at Harvard University is visiting Melbourne University and discussed this revolutionary research with Jon Faine.
-
Video/AnimationBioinspired Approach to Sepsis TherapyWyss Institute Founding Director Don Ingber, Senior Staff Scientist Michael Super and Technology Development Fellow Joo Kang explain how they engineered the Mannose-binding lectin (MBL) protein to bind to a wide range of sepsis-causing pathogens and then safely remove the pathogens from the bloodstream using a novel microfluidic spleen-like device. Credit: Wyss Institute at Harvard...
-
Video/AnimationBone Marrow-on-a-ChipWyss Institute Founding Director Don Ingber, Postdoctoral Fellow Yu-suke Torisawa, and Researcher Catherine Spina explain how and why a they built bone marrow-on-a-chip, and how they got it to act like whole living marrow and manufacture blood cells. Credit: Wyss Institute at Harvard University
-
Video/AnimationResearchers mimic pulmonary edema in Lung-on-a-ChipThe Wyss Institute’s human breathing lung-on-a-chip, made using human lung and blood vessel cells, acts much like a lung in a human body. A vacuum re-creates the way the lungs physically expand and contract during breathing. As reported in Science Translational Medicine on November 7, 2012, Wyss researchers have now mimicked a human disease –...
-
Video/AnimationIntroduction to Organs-on-a-ChipWhat if we could test drugs without animal models? Wyss Institute researchers and a multidisciplinary team of collaborators have engineered microchips that recapitulate the microarchitecture and functions of living human organs, including the lung, intestine, kidney, skin, bone marrow and blood-brain barrier. These microchips, called ‘organs-on-chips’, offer a potential alternative to traditional animal testing. Each...