Multimedia search results
28 Results for ''
-
Video/AnimationeToehold: an RNA-detecting control element for use in RNA therapeutics, diagnostics and cell therapiesThis animation shows an example of an eToehold that detects and signals the presence of a specific viral RNA in a human cell. After the virus has injected its RNA into a host cell, the RNA acts as a “trigger RNA” by binding to a complementary sequence within the eToehold specifically engineered for its detection....
-
Video/AnimationInnovation Showcase – Wyss Institute: Wearable Technology with BiosensorsJay Sugarman talks with Peter Nguyen Ph.D., Luis Soenksen, Ph.D., and Nina Donghia–all of whom are associated with the Wyss Institute for Biologically Inspired Engineering at Harvard University. They’re on Innovation Showcase to inform viewers about the groundbreaking research they and their colleagues have been involved with related to the development of wearable technology as...
-
Audio/PodcastTalking Biotech: COVID-19 Detection Masks and WearablesCOVID-19 is the spectrum of pathologies caused by the SARS-CoV2 virus. While the pandemic moves well into its second year, the importance of detection in populations cannot be overstated. However, testing methods typically include visiting testing centers, and it is hard to find a test that is both rapid and precise. Wyss Research Scientist Dr....
-
Video/AnimationBeating Back the Coronavirus – COVID-19 detecting face maskUsing freeze-dried cell free reactions and CRISPR-based biosensors, researchers at the Wyss Institute and M.I.T. have created a face mask that can detect the SARS-CoV-2 virus in a wearer’s breath in under 90 minutes. Such a mask would allow medical professionals to quickly identify COVID-19 patients and begin effective treatments. This facemask is a proof-of-concept...
-
Video/AnimationWearable Synthetic Biology – Clothing that can detect pathogens and toxinsWhat if we could create clothing that harnesses synthetic biology to detect the wearer’s exposure to toxins and pathogens? A team of researchers at the Wyss Institute and M.I.T. did just that byembedding freeze-dried, synthetic biology-based sensors into flexible materials and textiles. These sensors can detect pathogens such as the SARS-CoV-2 virus and toxins such...
-
Video/AnimationBeating Back the CoronavirusWhen the coronavirus pandemic forced Harvard University to ramp down almost all on-site operations, members of the Wyss Institute community refocused their teams, and formed new ones, in order to fight COVID-19 on its multiple fronts. These efforts include building new pieces of personal protective equipment that were delivered to frontline healthcare workers, developing new...
-
Video/AnimationSABER-FISH: Enabling the sensitive and multiplexed detection of nucleic acids within thick tissuesThis animation shows how SABER-FISH uses a suite of DNA nanotechnological methods that together enable the sensitive and multiplexed detection of DNA and RNA targets within cells and thick tissues. Credit: Wyss Institute at Harvard University
-
Audio/PodcastFrom the Old Chemistry Set to the New ‘BioBits,’ Cutting-Edge Kit to Teach BiologyFrom the Old Chemistry Set to the New ‘BioBits,’ Cutting-Edge Kit to Teach Biology was originally broadcast on WBUR on November 23, 2018. This story features Wyss Core Faculty member James Collins. The original broadcast story can be found here.
-
Video/AnimationLight-driven fine chemical production in yeast biohybridsWyss Institute Core Faculty member Neel Joshi explains the concept of yeast biohybrids and how they can be used to harvest energy from light to drive the production of fine chemicals. Credit: Wyss Institute at Harvard University
-
Video/AnimationBioBitsResearchers at the Wyss Institute, MIT, and Northwestern University have collaborated to create “BioBits,” a low-cost, shelf-stable educational kit to teach synthetic and molecular biology in K-12 classrooms. The kit utilizes freeze-dried cell-free reactions that eliminate the need for growing living cells in order to perform biological experiments. Different modules in the kit teach students...
-
Video/AnimationPrimer Exchange ReactionIn this video, Jocelyn Kishi illustrates how Primer Exchange Reaction (PER) cascades work to autonomously create programmable long single-stranded DNA molecules. Credit: Wyss Institute at Harvard University.
-
Video/AnimationCRISPR-Cas: Molecular RecordingIn this video, Wyss Institute and Harvard Medical School researchers George Church and Seth Shipman explain how they engineered a new CRISPR system-based technology that enables the chronological recording of digital information, like that representing still and moving images, in living bacteria. Credit: Wyss Institute at Harvard University
-
Video/AnimationWyss Study: Memory GenesResearchers at the Wyss Institute and the Personal Genome Project (PGP) are using Lumosity games to evaluate memory functions and response times. The genomes of high performers will be sequenced, with the goal of uncovering the relationship between genetics, memory, attention, and reaction speed. This video featuring George Church, Core Faculty of the Wyss Institute and Professor...
-
Audio/PodcastDisruptive: Molecular RoboticsHow can DNA be programmed to build novel structures, devices, and robots? We have taken our understanding of DNA to another level, beginning to take advantage of some of DNA’s properties that have served nature so well, but in ways nature itself may have never pursued. Humans can now use DNA as a medium for...
-
Video/AnimationDetecting Zika: A platform for rapid, low-cost diagnosticsIn this video, a team of collaborators led by Wyss Core Faculty member James Collins discuss a low-cost, paper-based diagnostic system that they developed for detecting specific strains of the Zika virus, with the goal that it could soon be used in the field to easily screen blood, urine, or saliva samples. Credit: Wyss Institute...
-
Audio/PodcastGeorge Church: Responsibility, art & science of intentional extinction, de-extinction & agingGeorge Church Responsibility, art & science of intentional extinction, de-extinction & aging Wednesday, Feb 17, 2016 ArtScience @ Le Lab Lecture Series: Art, Design, Engineering & Biology – Core Faculty from the Wyss Institute for Biologically Inspired Engineering at Harvard University discuss how the arts and design are informing the frontiers of science. ArtScience @...
-
Video/AnimationDistributed Cell Division CounterGenetically engineered E. coli containing a fluorescing red protein enabled a Wyss Institute and Harvard Medical School team to analyze the population fluctuations of gut microbes by comparing proportion of “marked” to “unmarked” cells. Credit: Wyss Institute at Harvard University
-
Video/AnimationCRISPR-Cas9: Safeguarding Gene DrivesIn this animation, learn how effective safeguarding mechanisms developed at the Wyss Institute and Harvard Medical School can be applied to ensure gene drive research is done responsibly in the laboratory. These safeguards enable responsible scientific investigation into how gene drives could one day be leveraged for the greater good of human health, agriculture, and...
-
Video/AnimationCRISPR-Cas9: Gene Target TroubleshootingIn this animation, learn how a “library on library” approach was used to create a software algorithm that can predict the best way to target any specific gene. Using the most effective RNA sequence, which can be selected using the novel software’s ranking and scoring algorithm, the gene editing mechanism known as CRISPR-Cas9 can be...
-
Video/AnimationAntibiotic EfficacyIn this video, Wyss Institute Core Faculty member James Collins and Michael Lobritz explain how antibiotics can have vastly different effects on pathogenic bacteria and suggest potential implications for improving antibiotic treatments in infected patients. Credit: Wyss Institute at Harvard University
-
Video/AnimationCircadian TransplantThe first successful transplant of a circadian rhythm into a naturally non-circadian species could lead to precisely timed release of drugs and other innovative therapeutic applications. In this video, gut bacteria (E. coli) exhibit a circadian rhythm after circadian oscillators were transferred from cyanobacteria. The ‘mother cell’ at the top blinks on and off with...
-
Video/AnimationCas9: As a Transcriptional ActivatorIn this technical animation, Wyss Institute researchers instruct how they engineered a Cas9 protein to create a powerful and robust tool for activating gene expression. The novel method enables Cas9 to switch a gene from off to on and has the potential to precisely induce on-command expression of any of the countless genes in the...
-
Video/AnimationGene Editing Mechanism of CRISPR-Cas9In this animation, learn how CRISPR-Cas9 gene editing technology can be used to precisely disrupt and modify specific genes. Credit: Wyss Institute at Harvard University.
-
Video/AnimationToehold SwitchesIn this animation, Wyss Institute Postdoctoral Fellow Alex Green, Ph.D., the lead author of “Toehold Switches: De-Novo-Designed Regulators of Gene Expression”, narrates a step-by-step guide to the mechanism of the synthetic toehold switch gene regulator. Credit: Wyss Institute at Harvard University
-
Video/AnimationProgrammable Paper: Advances in Synthetic BiologyWyss Institute scientists discuss the collaborative environment and team effort that led to two breakthroughs in synthetic biology that can either stand alone as distinct advances – or combine forces to create truly tantalizing potentials in diagnostics and gene therapies. Credit: Wyss Institute at Harvard University.
-
Video/AnimationBIND BiofilmIn this video Wyss Institute Core Faculty member Neel Joshi and Postdoctoral Fellow Peter Nguyen describe how their protein engineering system called BIND (Biofilm-Integrated Nanofiber Display) could be used to redefine biofilms as large-scale production platforms for biomaterials that can be programmed to provide functions not possible with existing materials. An animation depicts how it...
-
Video/AnimationCRISPR-Cas9: Gene DrivesThis animation explains how an emerging technology called “gene drives” may be used to potentially spread particular genomic alterations through targeted wild populations over many generations. It uses mosquitoes as an example of a target species – and illustrates how the versatile genome editing tool called CRISPR makes it possible. Credit: Wyss Institute at Harvard...
-
Video/AnimationMagnetic YeastIn this video, Wyss Core Faculty member Pamela Silver describes how her team at the Wyss Institute and Harvard Medical School induced magnetic sensitivity in a non-magnetic organism. This technology could potentially be used to magnetize a variety of different cell types in medical, industrial and research applications. Credit: Wyss Institute at Harvard University