Search results
315 Results for 'Manufacturing'
- Technologies (33)
- Collaborations (0)
- Team (0)
- News (207)
- Pages (0)
- Multimedia (75)
- Publications (0)
- Jobs (0)
- Events (0)
Technologies 33
-
Metabolically Labeled CAR-T Cells Against Cancer
Through a simple and effective metabolic labeling approach, patient-derived T cells engineered to carry immune-enhancing cytokines on their surfaces could help expand adoptive T cell therapies to treatment of solid tumors and improve blood cancer therapies. -
Catalytic Materials: Cheaper, Better Air Purification for a Healthier World
Our catalytic materials are inspired by the nanostructure of butterfly wings and enable affordable air purification for a variety of applications. -
DNA Nanostructures for Drug Delivery
Researchers at the Wyss Institute have developed two methods for building arbitrarily shaped nanostructures using DNA, with a focus on translating the technology towards nanofabrication and drug delivery applications. One proprietary nanofabrication technique, called “DNA-brick self-assembly,” uses short, synthetic strands of DNA that work like interlocking Lego® bricks. It capitalizes on the ability to program... -
Tunable ECMs for more effective T cell therapies
Tunable hydrogels that enhance the efficacies of adoptively transferred immune cells during their manufacturing by mimicking target tissue biomechanics. -
Reel Foods: Cultivated fillets of fish for healthier people and planet
Reel Foods leverages cardiac tissue engineering methods developed at the Wyss Institute to generate cultivated fish fillets that are indistinguishable from wild-caught seafood, have a lower carbon footprint than traditional fish production, and are free from contaminants like mercury and PFAS. -
Manufacturing Mini Surgical Robots
Project 1985 is commercializing the Wyss Institute’s Pop-Up MEMS technology to quickly and cheaply develop tiny robotic tools for minimally invasive surgery.
News 207
Multimedia 75
-
Video/AnimationPeter Nguyen: Biology Engineering, Bigfoot Hunting, and Better Climate TechnologyWyss Senior Scientist Peter Nguyen received a B.S. in Biochemistry and B.A. in Philosophy from the University of Texas, his M.Bs. from the Keck Graduate Institute, and his Ph.D. in Biochemistry from Rice University. At the Wyss Institute, Peter currently works on programmable probiotics and freeze-dried cell-free manufacturing technology across multiple platforms. His research interests...
-
Video/AnimationMetabolic T cell Labeling: simple and effective enhancement of therapeutic T cells with immune-stimulating cytokinesThis animation shows how the surface of patient-derived T cells is metabolically labeled with azido-sugar molecules that then can be used to attach immune-enhancing cytokines with the help of click chemistry. The approach could help expand adoptive T cell therapies to treatment of solid tumors. Credit: Wyss Institute at Harvard University
-
Video/AnimationNature Can Help Us Prepare for the Next PandemicResiliency, redundancy, adaptability: COVID-19 has shown humanity that we need more of the qualities that are built into nature. See how a cat’s tongue inspired Wyss Lead Staff Engineer Richard Novak to create a novel nasal swab design to aid in COVID-19 diagnostics.
-
Video/AnimationCirce: Using Microbes to Make Biodegradable ProductsCurrent manufacturing methods release harmful greenhouse gases and pollution, and many of the products produced do not biodegrade, damaging our ecosystems even further. What if we could turn greenhouse gases into biodegradable products? Researchers at the Wyss Institute are using synthetic biology to make this a reality. Credit: Wyss Institute at Harvard University
-
Video/AnimationOrigami Miniature Surgical ManipulatorResearchers from the Wyss Institute, Harvard SEAS, and Sony have created the mini-RCM, a small surgical robot that can help surgeons perform delicate teleoperated procedures on the human body. Credit: Wyss Institute at Harvard University
-
Video/AnimationSmart Thermally Actuating TextilesSmart Thermally Actuating Textiles (STATs) are tightly-sealed pouches that are able to change shape or maintain their pressure even in environments in which the exterior temperature or airflow fluctuates. This soft robotics technology could be developed as novel components of rehabilitation therapies or to prevent tissue damage in hospital bed or wheelchair-bound individuals. Credit: Wyss...