Technologies search results
10 Results for ''
-
DNA Nanotechnology Tools – From Design to Applications
DNA nanostructures with their potential for cell and tissue permeability, biocompatibility, and high programmability at the nanoscale level are promising candidates as new types of drug delivery vehicles, highly specific diagnostic devices, and tools to decipher how biomolecules dynamically change their shapes, and interact with each other and with candidate drugs. Wyss Institute researchers are... -
abbieSense: Anaphylaxis Diagnostic
The molecule histamine plays a primary role in the anaphylaxis reaction, which is a major cause of illness and death in people with severe allergies. Histamine is a very small molecule composed of only seventeen atoms, making it a challenging target to detect. To date, no diagnostic test exists that can measure histamine levels accurately... -
Biomaterial Scaffolds for T Cell Expansion
Immunotherapy, or tweaking the body’s own immune system to treat disease, is attracting significant attention in the medical field for its potential to offer long-lasting cures with fewer side effects than chemotherapy or other drugs. One type of immunotherapy involves isolating T cells (a type of white blood cell) from a patient’s body, sometimes modifying... -
Toehold Probes for Nucleic Acid Detection
The accurate detection of specific DNA or RNA sequences is important for many research and diagnostic applications, and unspecific detection of similar sequences that can differ by only a single nucleotide can give false positive results. In addition, researchers and clinicians would like to accurately test for presence or absence of multiple single base changes... -
Toehold Switches for Synthetic Biology
The burgeoning field of synthetic biology is designing artificial gene circuits that recognize molecules in their environment and respond by regulating genes with desired activities. In the future, such capabilities could allow the engineering of cells as diagnostic or therapeutic devices, factories for the production of clinically or industrially coveted molecules, and as specialized devices... -
Cell-Free Biomolecule Manufacturing
Wyss Institute researchers have developed a biomolecular manufacturing method that can quickly and easily produce a wide range of vaccines, antimicrobial peptides and antibody conjugates while doing so anywhere, even in places without access to electrical power or refrigeration. The breakthrough could provide a life-saving workaround for making modern interventions available in remote areas. Today... -
DNA Nanostructures for Drug Delivery
Researchers at the Wyss Institute have developed two methods for building arbitrarily shaped nanostructures using DNA, with a focus on translating the technology towards nanofabrication and drug delivery applications. One proprietary nanofabrication technique, called “DNA-brick self-assembly,” uses short, synthetic strands of DNA that work like interlocking Lego® bricks. It capitalizes on the ability to program... -
FISSEQ: Fluorescent In Situ Sequencing
Working copies of active genes — called messenger RNAs or mRNAs —translate the genetic information present in DNA into proteins within the cells’ multiple compartments. They are often positioned strategically within cells in ways that contribute critically to how cells and tissues grow, develop and function, and their mislocation can lead to disease development. To... -
Multiplexed Molecular Force Spectroscopy
Programmable DNA nanoswitches, invented at the Wyss Institute, can now be used in combination with a benchtop Centrifuge Force Microscope (CFM) as a highly reliable tool to observe thousands of individual molecules and their responses to mechanical forces in parallel. By analyzing the responses of single molecules under conditions where they experience such forces, it is possible... -
Inexpensive Super-Resolution Microscopy
Wyss Institute scientists have developed a highly versatile and inexpensive microscopic imaging platform designed to visualize objects with molecular-scale resolution and unprecedented complexity. The DNA-powered imaging technology can reveal the inner workings of cells at the single molecule level, using conventional microscopes found in most laboratories. Key to the Wyss Institute’s DNA-driven imaging super resolution...