Search results
201 Results for 'Regenerative Medicine'
- Technologies (15)
- Collaborations (0)
- Team (0)
- News (149)
- Pages (0)
- Multimedia (37)
- Publications (0)
- Jobs (0)
- Events (0)
Technologies 15
-
GC Therapeutics: Changing the Future of Cell Therapies
GC Therapeutics (GCTx) is applying their stem cell-engineering TFome platform to overcome barriers in the development and manufacturing of cell therapies to improve patient access across a broad range of disease areas. -
Engineered Live Biotherapeutic Product (eLBP) to Protect the Microbiome from Antibiotics
eLBP is a safe and cost-effective therapeutic for patients treated with beta-lactam antibiotics that safeguards against the loss of health-essential microbes while preventing the development and spread of antibiotic resistance. -
Ichor: Reversing Aging
Ichor is addressing multiple age-related diseases by identifying genetic interventions that reprogram old cells to a younger state. Therapies based on these interventions could improve survival for cancer patients and long-term cardiovascular and neurological health. -
ReConstruct: Vascularized Tissue for Breast Reconstruction and Augmentation
ReConstruct is a platform for growing, vascularizing, and implanting patient-derived tissues that enable safer breast reconstruction after cancer surgery. -
Sustained Growth Factor Delivery for Regenerating Tissues
The Problem Millions of people worldwide suffer from traumatic injuries or health conditions that cause damage to soft tissues including nerves, muscles, and blood vessels. The body can heal some of that damage, but more serious cases like the severing of a nerve or sustained oxygen deprivation can lead to permanent loss of movement or... -
Kidney Engineering Technology for New Tissue Replacement Therapies
Trestle Biotherapeutics licensed 3D bioprinting, and stem cell and kidney organoid engineering methods to help it create kidney repair and replacement therapies. These could become new standard-of-care options beyond dialysis and kidney transplants for patients with kidney failure.
News 149
Multimedia 37
-
Video/Animation20ish Questions with Elliot Chaikof20-ish Questions shows a different side of Wyss Institute faculty, touching on aspects of their personal life, hobbies, interests, as well as their research. This round follows Elliot Chaikof, an Associate Faculty member at the Wyss Institute as well as the Chair of the Department of Surgery & Surgeon-in-Chief at Beth Israel Deaconess Medical Center....
-
Video/AnimationESCAPE BioengineeringA research team at the Wyss Institute and Boston University has developed ESCAPE, the first method that enables the engineering of tissues across multiple length scales, ranging from the diameter of a cell to the cm scale of a heart valve. Credit: Wyss Institute at Harvard University
-
Video/AnimationReConstruct – 3D Bioprinted Vascularized Fat Tissues for Breast ReconstructionBreast cancer affects 15% of all women. Current options for breast reconstruction are insufficient and have poor patient outcomes. A research team at the Wyss Institute is addressing this clinical need by fabricating vascularized adipose tissue flaps for therapeutic use. Credit: Wyss Institute at Harvard University
-
Video/AnimationJanus Tough Adhesives for Tendon RepairThere is a large unmet need for tendon regeneration therapies after injury. Building upon the tough gel adhesive technologies developed at the Wyss Institute at Harvard University and the Harvard School of Engineering and Applied Sciences, researchers from these institutions collaborated with a group at Novartis to create the Janus Tough Adhesives (JTAs). This two-sided...
-
Audio/PodcastOf Mice and Massage with Dr. Bo Ri SeoYou know those people who say you can’t change tissue? Well Wyss Postdoctoral Fellow Bo Ri Seo explains otherwise on this episode of BodyTalk. She is the lead writer on an exciting paper. Dr. Bo Ri Seo is a biomedical engineer who has been studying mechanobiology and mechanotherapy to develop therapeutic strategies for cancer and...
-
Video/AnimationPhonoGraft: Programming the eardrum to repair itselfEardrum perforations are a widespread problem affecting millions worldwide. Current standard of care is invasive, involves harvesting an autologous tissue to patch the eardrum, and often requires to revision surgeries, while hearing outcomes remain unsatisfying. What if we could program the eardrum to repair itself after injury? Researchers at the Wyss Institute, Massachusetts Eye and...