Technologies search results
9 Results for ''
-
Crisscross Nanoseed Detection: Nanotechnology-Powered Infectious Disease Diagnostics
This nanotech-based diagnostic platform uses a unique nucleation mechanism that assembles a DNA "nanoseed" in the presence of a pathogen-derived biomarker that then is amplified within 15 minutes to create a signal for easy detection. It is highly robust, and cost-effective, and can be adapted to detect a variety of biomarkers. -
DNA Nanostructures for Drug Delivery
Researchers at the Wyss Institute have developed two methods for building arbitrarily shaped nanostructures using DNA, with a focus on translating the technology towards nanofabrication and drug delivery applications. One proprietary nanofabrication technique, called “DNA-brick self-assembly,” uses short, synthetic strands of DNA that work like interlocking Lego® bricks. It capitalizes on the ability to program... -
DNA Nanotechnology Tools: From Design to Applications
A suite of diverse, multifunctional DNA nanotechnological tools with unique capabilities and potential for a broad range of clinical and biomedical research areas. Our DNA nanotechnology devices were engineered to overcome specific bottlenecks in the development of new therapies and diagnostics, and to help further our understanding of molecular structures. -
Bone Marrow-Like Scaffolds for Accelerating Immune Reconstitution
An implantable bone marrow cryogel to accelerate the full reconstitution of the immune system, including T cell immunity, in patients that received chemotherapy and a bone marrow transplant. This could provide an off-the-shelf, material-based solution for patients with severe blood disorders whose immunity is recovering only slowly after treatment. -
milliDelta: Millimeter-Scale Delta Robot
Delta robots are deployed in many industrial processes, including pick-and-place assemblies, machining, welding, and food packaging. Three individually controlled lightweight arms enable fast and accurate motion of an output platform in three directions. Roboticists have reduced the size of Delta robots for tasks in limited workspaces, but so far, using conventional manufacturing techniques and components,... -
HAMR: Versatile Crawling Microrobot
Small or difficult-to-access spaces such as areas covered with rubble, or narrow pipes and engines can pose obstacles to search-and-rescue missions, repair works, or environmental and industrial monitoring. One solution for these problems could be small-sized robots that are able to navigate such spaces, transport payload, sense, and communicate. Wyss Institute researchers have developed a... -
Programmable Robot Swarms
Collective behaviors enable animals like ants to achieve remarkable, colony-level feats through the distributed actions of millions of independent agents. These collective behaviors are inspiring engineers at the Wyss Institute to build simple mobile robots that harness the demonstrated power of the swarm, performing collective tasks like transporting large objects or autonomously building human-scale structures.... -
Pop-Up MEMS: Origami-Inspired Micromanufacturing
Recent decades have seen rapid development in the manufacture of microelectromechanical systems (MEMS) at the micrometer scale, mostly based on silicon wafer processing techniques, with characteristic length scales of millimeters to nanometers. However, standard MEMS techniques are often inappropriate for producing machines with complex 3D topologies and varied constituent materials at the mesoscale, at sizes... -
4D Printing of Shapeshifting Devices
Organisms, such as flowers and plants, have tissue compositions and microstructures creating dynamic morphologies that can shapeshift in response to changes in their environments. Researchers at the Wyss Institute have mimicked a variety of such dynamic shape changes like those performed by tendrils, leaves, and flowers in response to changes in humidity or temperature with...