Search results
74 Results for 'Surgery'
- Technologies (11)
- Collaborations (0)
- Team (0)
- News (46)
- Pages (0)
- Multimedia (17)
- Publications (0)
- Jobs (0)
- Events (0)
Technologies 11
-
Injectable Hydrogel Adhesive for Improved Muscle Regeneration
A super-strong, stretchy, and self-healing biomaterial that adheres to muscles and helps them heal faster after injury. -
Soft hydrogel electrodes for better, safer implants
Soft, conductive hydrogels match the physical properties of the human brain, enabling the creation of electrodes and implantable devices that can improve brain-machine interfaces while reducing the risk of injury. -
Manufacturing Mini Surgical Robots
Project 1985 is commercializing the Wyss Institute’s Pop-Up MEMS technology to quickly and cheaply develop tiny robotic tools for minimally invasive surgery. -
Sustained Growth Factor Delivery for Regenerating Tissues
The Problem Millions of people worldwide suffer from traumatic injuries or health conditions that cause damage to soft tissues including nerves, muscles, and blood vessels. The body can heal some of that damage, but more serious cases like the severing of a nerve or sustained oxygen deprivation can lead to permanent loss of movement or... -
PhonoGraftTM: Biomimetic Hearing-restoration Technology
PhonoGraft is an eardrum-regenerating device that enables better and longer-lasting eardrum reconstruction, reducing the need for invasive surgeries and minimizing the risk of long-term hearing loss. Wyss startup Beacon Bio was acquired by Desktop Health, a healthcare business within Desktop Metal, Inc. which is further developing this technology towards commercialization with the former Wyss startup team leading the way. -
Tough Gel Adhesives for Wound Healing
A Band-Aid® adhesive bandage is an effective treatment for stopping external bleeding from skin wounds, but an equally viable option for internal bleeding does not yet exist. Surgical glues are often used inside the body instead of traditional wound closure techniques like stitches, staples, and clips because they reduce the patient’s time in the hospital...
News 46
Multimedia 17
-
Audio/PodcastEngineering Adhesive Biomaterials to Improve Healing – ThinkResearch PodcastBen Freedman, Ph.D., discusses his research on the design and synthesis of adhesive biomaterials for applications in orthopedic and cardiovascular surgery, as well as neurosurgery.
-
Video/AnimationInnovation Showcase – Tough Gel TechnologyJay Sugarman talks with Benjamin Freedman, PhD. Benjamin is a Postdoctoral Fellow at the Wyss Institute for Biologically Inspired Engineering at Harvard University. He’s on Innovation Showcase to inform viewers about the groundbreaking research he and some of his colleagues have been involved with related to the development of the next generation of medical-grade adhesives,...
-
Video/AnimationPhonoGraft: Programming the eardrum to repair itselfEardrum perforations are a widespread problem affecting millions worldwide. Current standard of care is invasive, involves harvesting an autologous tissue to patch the eardrum, and often requires to revision surgeries, while hearing outcomes remain unsatisfying. What if we could program the eardrum to repair itself after injury? Researchers at the Wyss Institute, Massachusetts Eye and...
-
Video/AnimationA Laser Steering Device for Robot-Assisted SurgeryResponding to an unmet need for a robotic surgical device that is flexible enough to access hard to reach areas of the G.I. tract while causing minimal peripheral tissue damage, Researchers at the Wyss Institute and Harvard SEAS have developed a laser steering device that has the potential to improve surgical outcomes for patients. Credit:...
-
Video/AnimationOrigami Miniature Surgical ManipulatorResearchers from the Wyss Institute, Harvard SEAS, and Sony have created the mini-RCM, a small surgical robot that can help surgeons perform delicate teleoperated procedures on the human body. Credit: Wyss Institute at Harvard University
-
Video/AnimationAlginate Hydrogel for AngiogenesisThis video describes how an alginate hydrogel can be used to trigger the formation of new blood vessels at an ischemic site in the body. Credit: Wyss Institute at Harvard University.