Multimedia
- Multimedia Type
- Focus Areas
- 3D Organ EngineeringHighly functional, multiscale, vascularized organ replacements that can be seamlessly integrated into the body
- Bioinspired TherapeuticsTherapeutic discovery and development enabled by microsystems engineering, molecular engineering, computational design, and organ-on-a-chip in vitro human experimentation technology
- Diagnostics for Human and Planetary HealthDeveloping new diagnostic technologies that solve important healthcare and environmental challenges
- Immuno-MaterialsMaterial-based systems capable of modulating immune cells ex vivo and in the human body to treat or diagnose disease
- Living Cellular DevicesRe-engineered living cells and biological circuits as programmable devices for medicine, manufacturing and sustainability
- Molecular RoboticsSelf-assembling molecules that can be programmed like robots to carry out specific tasks without requiring power
- Sustainable FuturesSustainable technologies that link human and environmental health, providing solutions to problems in materials, remediation, food, and resilience
- Synthetic BiologyBreakthrough approaches to reading, writing, and editing nucleic acids and proteins for multiple applications, varying from healthcare to data storage
- Technology Areas
- 3D Printing
- Actuators
- Biomarker
- Building Materials
- Cell Therapy
- Diagnostics
- Disease Model
- DNA Nanostructures
- Drug Development
- Filtration & Separation
- Gene Circuits
- Imaging
- Immunotherapy
- Medical Devices
- Microbiome
- Microfabrication
- Microfluidics
- Microsystems
- Nanodevices
- Organs on Chips
- Robots
- Sensors
- Surface Coatings
- Therapeutics
- Vaccines
- Wearable Devices
- Disciplines
- Architecture
- Biochemistry
- Bioinformatics
- Biotechnology
- Cell Biology
- Chemical Engineering
- Chemistry
- Computer Science
- Control
- Design
- Electrical Engineering
- Genetics
- Genome Engineering
- Immune Engineering
- Materials Science
- Mechanical Engineering
- Mechanobiology
- Medicine
- Microtechnology
- Nanobiotechnology
- Nanotechnology
- Pharmacology
- Physics
- Physiology
- Polymer Chemistry
- Regenerative Medicine
- Robotics
- Self Assembly
- Stem Cell Engineering
- Surgery
- Synthetic Biology
- Tissue Engineering
- Toxicology
- Application Areas
- Apparel
- Bacteria
- Balance & Motor Control
- Brain Disease
- Cancer
- Diabetes
- Drug Development
- Energy
- Fundamental Research
- Healthy Aging
- Heart Disease
- Hemostasis
- Infectious Disease
- Inflammatory Diseases
- Intestinal Disease
- Kidney Disease
- Liver Disease
- Lung Disease
- Manufacturing
- Motor Control
- Personalized Medicine
- Rehabilitation
- Sepsis
- Stroke
- Sustainability
- Targeted Drug Delivery
- Toxicology
- Water
- Women's Health
304 Results for Video/Animation
-
Video/AnimationDiscrete Molecular ImagingWyss Institute Core Faculty member Peng Yin and his co-worker Mingjie Dai explain in this video, how Discrete Molecular Imaging (DMI) can be used to enhance their DNA-PAINT super-resolution imaging platform to visualize features on a single-molecule scale. Credit: Wyss Institute at Harvard University
-
Video/AnimationLiquid Gated MembranesThe first part of this animation compares the transmembrane pressure (TMP) between a standard filter and a liquid gated membrane filter (depicted by pressure gauge in bottom right corner). The second part of the animation shows the tendency of each system to clog up due to fouling. The liquid gated membrane filter results in a...
-
Video/AnimationRobobee: Saving Energy While in the AirThe RoboBee, pioneered at the Harvard Microrobotics Lab, uses an electrode patch and a foam mount that absorbs shock to perch on surfaces and conserve energy in flight. Credit: Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS)
-
Video/AnimationEfficient Recovery of Stem Cell SheetsSee in this video how an intact sheet of mesenchymal stem cells, stained with a violet dye, can be lifted off the infused polymer substrate in the culture dish using a filter paper and transferred to a new surface. Credit: Wyss Institute at Harvard University
-
Video/AnimationDetecting Zika: A platform for rapid, low-cost diagnosticsIn this video, a team of collaborators led by Wyss Core Faculty member James Collins discuss a low-cost, paper-based diagnostic system that they developed for detecting specific strains of the Zika virus, with the goal that it could soon be used in the field to easily screen blood, urine, or saliva samples. Credit: Wyss Institute...
-
Video/Animation3D Printing Metal in MidairIn this video, see the laser-assisted method developed by Wyss Core Faculty member Jennifer Lewis that allows metal to be 3D printed in midair. Credit: Lewis Lab / Wyss Institute at Harvard University
-
Video/AnimationPrinting Vascular TissuePrinting vessel vasculature is essential for sustaining functional living tissues. Until now, bioengineers have had difficulty building thick tissues, lacking a method to embed vascular networks. A 3D bioprinting method invented at the Wyss Institute and Harvard SEAS embeds a grid of vasculature into thick tissue laden with human stem cells and connective matrix. Printed...
-
Video/AnimationMeet Root: The Robot that Brings Code to LifeComputational thinking and programming underlie the digital world around us – yet K-16 teachers have been challenged to find the right teaching tool to instill coding and programming skills in beginners of a wide age range. Recognizing the pressing need for young students to be digitally literate and the remarkable educational power of robots, a...
-
Video/AnimationSoft Robotic Grippers For Deep-Sea ExplorationIn this video, two types of soft robotic grippers are shown successfully collecting coral samples at the bottom of the Red Sea. The first gripper features opposing pairs of bending actuators, while the second gripper – inspired by the coiling action of a boa constrictor – can access tight spaces and clutch small and irregular...
-
Video/Animation4D Printing: Shapeshifting ArchitecturesA team at the Wyss Institute and Harvard SEAS has developed a new microscale printing method to create transformable objects. These “4D-printed” objects go a step beyond 3D printing to incorporate a fourth dimension: time. The method was inspired by the way plants change shape over time in response to environmental stimuli. This orchid-shaped structure...
-
Video/AnimationWyss Institute: A Technology RevolutionThere is a technology revolution – a revolution inspired by nature, built upon collaboration, self-assembly and disruptive innovation. The Wyss Institute is crossing boundaries and disrupting the status quo to pioneer new technologies, new devices, and new therapeutics that harness the power of life itself. There is a technology revolution and it is happening at...
-
Video/AnimationSmall Airway-on-a-Chip: Modeling COPD and AsthmaDevelopment of new therapeutics for chronic lung diseases have been hindered by the inability to study them in vitro. To address this challenge, Wyss Institute researchers used their Organ-on-a-Chip technology to produce a microfluidic ‘human lung small airway-on-a-chip.’ The device, which is composed a clear rubber material, is lined by living Human lung small airway...