Multimedia
- Multimedia Type
- Focus Areas
- 3D Organ EngineeringHighly functional, multiscale, vascularized organ replacements that can be seamlessly integrated into the body
- Bioinspired Therapeutics & DiagnosticsTherapeutic discovery and diagnostics development enabled by microsystems engineering, molecular engineering, computational design, and organ-on-a-chip in vitro human experimentation technology
- Computational Design & DiscoveryCombining predictive bioanalytics and machine learning with physical and mathematical modeling and simulation
- Diagnostics AcceleratorDeveloping new diagnostic technologies that solve important healthcare challenges through collaboration at the Wyss Institute with clinicians and industry partners
- Immuno-MaterialsMaterial-based systems capable of modulating immune cells ex vivo and in the human body to treat or diagnose disease
- Living Cellular DevicesRe-engineered living cells and biological circuits as programmable devices for medicine, manufacturing and sustainability
- Molecular RoboticsSelf-assembling molecules that can be programmed like robots to carry out specific tasks without requiring power
- Synthetic BiologyBreakthrough approaches to reading, writing, and editing nucleic acids and proteins for multiple applications, varying from healthcare to data storage
- Technology Areas
- 3D Printing
- Actuators
- Biomarker
- Building Materials
- Cell Therapy
- Diagnostics
- Disease Model
- DNA Nanostructures
- Drug Development
- Filtration & Separation
- Gene Circuits
- Imaging
- Immunotherapy
- Medical Devices
- Microbiome
- Microfabrication
- Microfluidics
- Microsystems
- Nanodevices
- Organs on Chips
- Robots
- Sensors
- Surface Coatings
- Therapeutics
- Vaccines
- Wearable Devices
- Disciplines
- Aging
- Architecture
- Biochemistry
- Bioinformatics
- Biotechnology
- Cell Biology
- Chemical Engineering
- Chemistry
- Computer Science
- Control
- Design
- Electrical Engineering
- Genetics
- Genome Engineering
- Immune Engineering
- Materials Science
- Mechanical Engineering
- Mechanobiology
- Medicine
- Microtechnology
- Nanobiotechnology
- Nanotechnology
- Pharmacology
- Physics
- Physiology
- Polymer Chemistry
- Regenerative Medicine
- Robotics
- Self Assembly
- Stem Cell Engineering
- Surgery
- Synthetic Biology
- Tissue Engineering
- Toxicology
- Application Areas
- Anti-aging
- Apparel
- Bacteria
- Balance & Motor Control
- Brain Disease
- Cancer
- Diabetes
- Drug Development
- Energy
- Fundamental Research
- Heart Disease
- Hemostasis
- Infectious Disease
- Inflammatory Diseases
- Intestinal Disease
- Kidney Disease
- Liver Disease
- Lung Disease
- Manufacturing
- Motor Control
- Personalized Medicine
- Rehabilitation
- Sepsis
- Stroke
- Sustainability
- Targeted Drug Delivery
- Toxicology
- Water
- Women's Health
0 Results for No Current Selection
-
Video/AnimationNanoRx: Clot-Busting NanotherapeuticIn this animation, learn how the Wyss Institute clot-busting nanotherapeutic is activated by fluid high shear force – which occurs where blood flows through vessels narrowed by obstruction – to specifically target clots and dissolve them away. By pairing this drug with an intra-arterial device that restores blood flow to complete obstructions, the drug-device combination...
-
Audio/PodcastRobotics Lessons from TermitesJustin Werfel, Wyss Institute Research Scientist, shared his story for The Story Collider in a live storytelling event with the theme ‘The Science I Never Expected’ in June 2013. Justin Werfel received his PhD at MIT and did postdoctoral work at Harvard and the New England Complex Systems Institute. He works on topics including swarm...
-
Video/AnimationMeTro HydrogelsAn international team led by the Wyss Institute recently used microfabrication techniques to design a new micropatterned hydrogel that shows great promise for tissue engineering — cardiac tissue in particular. It incorporates an elastic protein called tropoelastin, which is found in all elastic human tissues. The Wyss Institute’s Ali Khademhosseini discusses the research. Credit: Wyss...
-
Video/AnimationRoboBee: Controlled flight of a robotic insectInspired by the biology of a fly, with submillimeter-scale anatomy and two wafer-thin wings that flap at 120 times per second, robotic insects, or RoboBees, achieve vertical takeoff, hovering, and steering. The tiny robots flap their wings using piezoelectric actuators — strips of ceramic that expand and contract when an electric field is applied. Thin...
-
Video/AnimationWyss Institute: The Adventure ContinuesWyss Institute Retreat 2012. Credit: Wyss Institute at Harvard University
-
Video/AnimationNeuroAssessA team at Harvard’s Wyss Institute and Beth Israel Deaconess have developed a computer tablet application that could rapidly and quantitatively assess neuromuscular performance. Credit: Wyss Institute at Harvard University
-
Video/AnimationDNA Bricks: Molecular AnimationThe nanofabrication technique, called ‘DNA-brick self-assembly,’ uses short, synthetic strands of DNA that work like interlocking Lego bricks. It capitalizes on the ability to program DNA to form into predesigned shapes thanks to the underlying “recipe” of DNA base pairs. Animation created by Digizyme for the Wyss Institute. Credit: Wyss Institute at Harvard University
-
Video/AnimationResearchers mimic pulmonary edema in Lung-on-a-ChipThe Wyss Institute’s human breathing lung-on-a-chip, made using human lung and blood vessel cells, acts much like a lung in a human body. A vacuum re-creates the way the lungs physically expand and contract during breathing. As reported in Science Translational Medicine on November 7, 2012, Wyss researchers have now mimicked a human disease –...
-
Video/AnimationInformation Storage in DNAGeorge Church and Sriram Kosuri discuss the benefits of using DNA as a storage medium and the approach they developed. Credit: Wyss Institute at Harvard University
-
Audio/PodcastBuilding Organs, On One Microchip At A TimeBuilding Organs, On One Microchip At A Time was originally broadcast on NPR on July 29, 2012. This story features Wyss Core Faculty member Don Ingber. Original broadcast story can be found here.
-
Video/AnimationClot-busting nanotherapeuticWyss Core Faculty member Donald E. Ingber describes the clot-busting nanotherapeutic. Credit: Wyss Institute at Harvard University
-
Audio/PodcastBuilding an Organ on a ChipProduced for MIT Technology Review by Kyanna Sutton and Susan Young, this audio segement features Wyss Institute Core Faculty member Don Ingber speaking about how cells grown on the Wyss Institute’s organ-on-chip devices behave more like cells in the body. The devices could improve the speed and success of drug discovery and reduce animal testing....