Multimedia search results
27 Results for ''
-
Video/AnimationLight-Seq: Light-Directed In Situ Barcoding of BiomoleculesThis animation explains how the Light-Seq technology works to barcode and deep-sequence selected cell populations in tissue samples, and how the team applied it to the analysis of distinct and rare cells in the mouse retina. Credit: Wyss Institute at Harvard University.
-
Audio/PodcastIlluminating Biological Context with Josie Kishi – Translation by Fifty YearsTechnologies like next-generation sequencing allow us to understand which RNA transcripts and proteins are expressed in biological tissues. However, it’s often equally important to understand how cells or molecules are positioned relative to one another! Whether it be a cell changing its shape, an organelle ramping up a metabolic process, or a DNA molecule traveling...
-
Video/AnimationUsing deep learning to detect cancerous skin lesionsMelanoma is a very severe cancer that is often diagnosed too late to save patients’ lives, and most people do not regularly visit a dermatologist for skin exams. Early-stage identification of suspicious pigmented lesions (SPLs), ideally by primary care providers, could lead to improved melanoma prognosis. Researchers at the Wyss Institute and MIT have developed...
-
Video/AnimationInterrogator: Human Organ-on-ChipsThis video describes the “Interrogator” instrument that can be programmed to culture up to 10 different Organ Chips and sequentially transfer fluids between their vascular channels to mimic normal human blood flow between the different organs of our body. Its integrated microscope enables the continuous monitoring of the tissues’ integrities in the individual organ chips...
-
Video/AnimationLighting up proteins with Immuno-SABERThis animation explains how Immuno-SABER uses the Primer Exchange Reaction (PER) to enable the simultaneous visualization of multiple proteins in tissues in different applications. Credit: Wyss Institute at Harvard University.
-
Video/AnimationSABER-FISH: Enabling the sensitive and multiplexed detection of nucleic acids within thick tissuesThis animation shows how SABER-FISH uses a suite of DNA nanotechnological methods that together enable the sensitive and multiplexed detection of DNA and RNA targets within cells and thick tissues. Credit: Wyss Institute at Harvard University
-
Exchange-PAINT: Neurons Up Close and PersonalDNA Exchange Imaging of fixed mouse hippocampal neurons stained sequentially with antibodies recognizing neuronal markers Synapsin I, vGAT, MAP2, pNFH, α-tubulin, acetyl-tubulin, GFAP and nuclear marker DAPI. Credit: Wyss Institute at Harvard University
-
Audio/PodcastDisruptive: Art Advances ScienceIn this episode of Disruptive, Wyss Institute Founding Director Don Ingber and Staff Scientist Charles Reilly discuss their process creating The Beginning, a short film inspired by Star Wars, to better communicate science to the public…and how they made a scientific discovery along the way. To make The Beginning, film industry visual effects and animation...
-
Video/AnimationPodocyte Cells: Kidney-on-a-ChipThis video shows a 3-dimensional rendering of the glomerulus-on-a-chip with human stem cell-derived mature podocytes (in green) grown and differentiated in one channel (shown on top) and that extend their processes through the modeled glomerulus basement membrane towards glomerular vascular cells (in magenta) in the parallel running channel (shown on the bottom). Credit: Wyss Institute...
-
Video/AnimationShear-Thinning Biomaterial: Catheter InjectionThis movie shows the solid state of the shear-thinning biomaterial immediately after release from the catheter into an aqueous solution (00:04). The STB is cohesive and remains as one solid piece throughout the injection process. There is no noticeable dissolution of the STB into the solution, suggesting it is stable immediately after being discharged from...
-
Video/AnimationSmoking Human Lung Small Airway-on-a-ChipIn this video, Wyss Founding Director Donald Ingber and Technology Development Fellow Kambez Benam explain how the integrated smoking device mimics normal cigarette smoke exposure and how it can impact research into the causes of COPD and into new biomarkers and therapeutics. Credit: Wyss Institute at Harvard University
-
Audio/PodcastDisruptive: Fluorescent In Situ SequencingDeveloped at the Wyss, FISSEQ (fluorescent in situ sequencing) is a spatial gene sequencing technology that reads and visualizes the three-dimensional coordinates of RNA and mRNAs – the working copies of genes – within whole cells and tissues. FISSEQ affords insights into biological complexity that until now have not been possible. In this episode of...
-
Video/AnimationSuper Resolution Discrete Molecular Imaging AnimationSee in this animation, how Discrete Molecular Imaging (DMI) uses DNA nanotechnology to reveal densely packed molecular features in structures similar in size as single protein molecules. Credit: Wyss Institute at Harvard University
-
Video/AnimationDiscrete Molecular ImagingWyss Institute Core Faculty member Peng Yin and his co-worker Mingjie Dai explain in this video, how Discrete Molecular Imaging (DMI) can be used to enhance their DNA-PAINT super-resolution imaging platform to visualize features on a single-molecule scale. Credit: Wyss Institute at Harvard University
-
Audio/PodcastDisruptive: Molecular RoboticsHow can DNA be programmed to build novel structures, devices, and robots? We have taken our understanding of DNA to another level, beginning to take advantage of some of DNA’s properties that have served nature so well, but in ways nature itself may have never pursued. Humans can now use DNA as a medium for...
-
Video/AnimationSmall Airway-on-a-Chip: Modeling COPD and AsthmaDevelopment of new therapeutics for chronic lung diseases have been hindered by the inability to study them in vitro. To address this challenge, Wyss Institute researchers used their Organ-on-a-Chip technology to produce a microfluidic ‘human lung small airway-on-a-chip.’ The device, which is composed a clear rubber material, is lined by living Human lung small airway...
-
Video/AnimationGastrointestinal Re-ProgrammingIn this animation, see an example of how genetically engineered microbes being developed by researchers at the Wyss Institute could detect and treat a wide range of gastrointestinal illnesses and conditions. Credit: Wyss Institute at Harvard University
-
Video/AnimationDNA NanoswitchesGel electrophoresis, a common laboratory process, sorts DNA or other small proteins by size and shape using electrical currents to move molecules through small pores in gel. The process can be combined with novel DNA nanoswitches, developed by Wyss Associate Faculty member Wesley Wong, to allow for the simple and inexpensive investigation of life’s most...
-
Video/AnimationBone Marrow-on-a-ChipWyss Institute Founding Director Don Ingber, Postdoctoral Fellow Yu-suke Torisawa, and Researcher Catherine Spina explain how and why a they built bone marrow-on-a-chip, and how they got it to act like whole living marrow and manufacture blood cells. Credit: Wyss Institute at Harvard University
-
Video/AnimationVirus-inspired DNA NanodevicesWyss Institute Core Faculty member William Shih and Technology Development Fellow Steven Perrault explain why DNA nanodevices need protection inside the body, and how a viral-inspired strategy helps protect them. Credit: Wyss Institute at Harvard University
-
Video/AnimationDNA CagesTo create supersharp images of their cage-shaped DNA polyhedra, the scientists used DNA-PAINT, a microscopy method that uses short strands of DNA (yellow) labeled with a fluorescent chemical (green) to bind and release partner strands on polyhedra corners, causing them to blink. The blinking corners reveal the shape of structures far too small to be...
-
Video/AnimationShrinking GelWhen the temperature rises to just below body temperature, this biocompatible gel shrinks dramatically within minutes, bringing tooth-precursor cells (green) closer together. Credit: Basma Hashmi
-
Video/AnimationFluorescent in situ SequencingIn this video, George Church, Ph.D., a Core Faculty member at the Wyss Institute and Professor of Genetics at Harvard Medical School, explains how fluorescent in situ sequencing could lead to new diagnostics that spot the earliest signs of disease, and how it could help reveal how neurons in the brain connect and function. Credit:...
-
Video/AnimationBuilding 3D Structures with DNA BricksThe nanofabrication technique, called ‘DNA-brick self-assembly,’ uses short, synthetic strands of DNA that work like interlocking Lego bricks. It capitalizes on the ability to program DNA to form into predesigned shapes thanks to the underlying ‘recipe’ of DNA base pairs. This animation accurately shows how the DNA strands self assemble to build a structure.DNA Nanostructures...
-
Video/AnimationDNA Bricks: Molecular AnimationThe nanofabrication technique, called ‘DNA-brick self-assembly,’ uses short, synthetic strands of DNA that work like interlocking Lego bricks. It capitalizes on the ability to program DNA to form into predesigned shapes thanks to the underlying “recipe” of DNA base pairs. Animation created by Digizyme for the Wyss Institute. Credit: Wyss Institute at Harvard University
-
Video/AnimationResearchers mimic pulmonary edema in Lung-on-a-ChipThe Wyss Institute’s human breathing lung-on-a-chip, made using human lung and blood vessel cells, acts much like a lung in a human body. A vacuum re-creates the way the lungs physically expand and contract during breathing. As reported in Science Translational Medicine on November 7, 2012, Wyss researchers have now mimicked a human disease –...
-
Video/AnimationLung-on-a-ChipCombining microfabrication techniques with modern tissue engineering, lung-on-a-chip offers a new in vitro approach to drug screening by mimicking the complicated mechanical and biochemical behaviors of a human lung. This extended version of the video includes our findings when we mimicked pulmonary edema on the chip. Credit: Wyss Institute at Harvard University