Application Area: Intestinal Disease
40 Results for 'Intestinal Disease'
- Technologies (4)
- Team (0)
- News (28)
- Events (0)
- Multimedia (8)
- Publications (0)
- Jobs (0)
Technologies 4
-
Microrobotic Laser-Steering Medical Device for Minimally Invasive Surgery
Endoscopy has proven extremely useful in many areas of medicine because it can be carried out with relatively few risks in a short time, and be used to diagnose and treat numerous diseases. In gastroenterology, endoscopies of the upper gastrointestinal tract (esophagus, stomach, first part of the small intestine; upper GI endoscopies) and lower gastrointestinal... -
Flexible Force Sensors for Microrobotics
As robots have gotten smaller, softer, and more maneuverable, they’ve opened up myriad possibilities for interacting with objects on a tiny scale, including on and in the human body. However, human hands still have a major advantage over robots: the ability to feel. Researchers at the Wyss Institute are using the Pop-Up MEMS manufacturing technique... -
Flexible Robots for Endoscopic Procedures
Endoscopes are a standard device in gastrointestinal medicine, used by surgeons to noninvasively see and take biopsies from tissues along the entire digestive tract. However, endoscopes themselves amount to hollow tubes with a camera and light attached, through which different instruments are threaded to the procedure site, and are rigid and not very maneuverable. Two... -
Human Organs-on-Chips
Clinical studies take years to complete and testing a single compound can cost more than $2 billion. Meanwhile, innumerable animal lives are lost, and the process often fails to predict human responses because traditional animal models often do not accurately mimic human pathophysiology. For these reasons, there is a broad need for alternative ways to...
News 28
Multimedia 8
-
Video/AnimationA Laser Steering Device for Robot-Assisted SurgeryResponding to an unmet need for a robotic surgical device that is flexible enough to access hard to reach areas of the G.I. tract while causing minimal peripheral tissue damage, Researchers at the Wyss Institute and Harvard SEAS have developed a laser steering device that has the potential to improve surgical outcomes for patients. Credit:...
-
Video/AnimationInterrogator: Human Organ-on-ChipsThis video describes the “Interrogator” instrument that can be programmed to culture up to 10 different Organ Chips and sequentially transfer fluids between their vascular channels to mimic normal human blood flow between the different organs of our body. Its integrated microscope enables the continuous monitoring of the tissues’ integrities in the individual organ chips...
-
Video/AnimationEngineered Cross-feeding in Bacterial ConsortiaThrough engineered amino acid cross-feeding, researchers at the Wyss Institute and Harvard Medical School modified multiple bacterial strains to reverse antagonistic interactions and develop symbiotic relationships, resulting in a more balanced consortium and paving the way for future bacteria-based therapeutics. Credit: Wyss Institute at Harvard University
-
Video/AnimationSelf-regenerating bacterial hydrogels as intestinal wound patchesThis animation explains how self-regenerating bacterial hydrogels could be used as adhesive patches to help intestinal wounds heal. Credit: Wyss Institute at Harvard University.
-
Video/AnimationDistributed Cell Division CounterGenetically engineered E. coli containing a fluorescing red protein enabled a Wyss Institute and Harvard Medical School team to analyze the population fluctuations of gut microbes by comparing proportion of “marked” to “unmarked” cells. Credit: Wyss Institute at Harvard University
-
Video/AnimationGastrointestinal Re-ProgrammingIn this animation, see an example of how genetically engineered microbes being developed by researchers at the Wyss Institute could detect and treat a wide range of gastrointestinal illnesses and conditions. Credit: Wyss Institute at Harvard University