Application Area: Intestinal Disease
50 Results for 'Intestinal Disease'
- Technologies (5)
- Collaborations (0)
- Team (0)
- News (35)
- Pages (0)
- Multimedia (10)
- Publications (0)
- Jobs (0)
- Events (0)
Technologies 5
-
Engineered Live Biotherapeutic Product (eLBP) to Protect the Microbiome from Antibiotics
eLBP is a safe and cost-effective therapeutic for patients treated with beta-lactam antibiotics that safeguards against the loss of health-essential microbes while preventing the development and spread of antibiotic resistance. -
Microrobotic Laser-Steering Medical Device for Minimally Invasive Surgery
Endoscopy has proven extremely useful in many areas of medicine because it can be carried out with relatively few risks in a short time, and be used to diagnose and treat numerous diseases. In gastroenterology, endoscopies of the upper gastrointestinal tract (esophagus, stomach, first part of the small intestine; upper GI endoscopies) and lower gastrointestinal... -
Flexible Force Sensors for Microrobotics
As robots have gotten smaller, softer, and more maneuverable, they’ve opened up myriad possibilities for interacting with objects on a tiny scale, including on and in the human body. However, human hands still have a major advantage over robots: the ability to feel. Researchers at the Wyss Institute are using the Pop-Up MEMS manufacturing technique... -
Flexible Robots for Endoscopic Procedures
Endoscopes are a standard device in gastrointestinal medicine, used by surgeons to noninvasively see and take biopsies from tissues along the entire digestive tract. However, endoscopes themselves amount to hollow tubes with a camera and light attached, through which different instruments are threaded to the procedure site, and are rigid and not very maneuverable. Two... -
Human Organs-on-Chips
Organ Chips are microfluidic devices lined with living human cells for drug development, disease modeling, and personalized medicine. Launched in 2014, Wyss startup Emulate, Inc., is leveraging the Wyss Institute’s Organ Chip technology to mimic human organs in vitro, enabling faster, better, and cheaper drug development and insights into human health.
News 35
Multimedia 10
-
Video/AnimationHow do we make safer and more effective drugs?Wyss researchers are using an ever-growing number of human tissue-mimicking Organ Chips to improve and accelerate the drug development process for a wide number of unmet diseases – and understand what causes them to erupt. More recently, they added a human Vagina Chip and personalized Barrett’s esophagus Chip to their arsenal, and created in vitro...
-
Video/AnimationMucus Layer In Vitro on Human Colon ChipUsing Human Organ Chips, researchers at the Wyss Institute were able to generate the mucus layer of the colon in vitro, which has never been done before. In the colon, the mucus layer protects intestinal epithelial cells against inflammatory stimuli such as pathogens, damaged cells, or irritants. The ability to support mucus-producing cells is one...
-
Video/AnimationA Laser Steering Device for Robot-Assisted SurgeryResponding to an unmet need for a robotic surgical device that is flexible enough to access hard to reach areas of the G.I. tract while causing minimal peripheral tissue damage, Researchers at the Wyss Institute and Harvard SEAS have developed a laser steering device that has the potential to improve surgical outcomes for patients. Credit:...
-
Video/AnimationInterrogator: Human Organ-on-ChipsThis video describes the “Interrogator” instrument that can be programmed to culture up to 10 different Organ Chips and sequentially transfer fluids between their vascular channels to mimic normal human blood flow between the different organs of our body. Its integrated microscope enables the continuous monitoring of the tissues’ integrities in the individual organ chips...
-
Video/AnimationEngineered Cross-feeding in Bacterial ConsortiaThrough engineered amino acid cross-feeding, researchers at the Wyss Institute and Harvard Medical School modified multiple bacterial strains to reverse antagonistic interactions and develop symbiotic relationships, resulting in a more balanced consortium and paving the way for future bacteria-based therapeutics. Credit: Wyss Institute at Harvard University
-
Video/AnimationSelf-regenerating bacterial hydrogels as intestinal wound patchesThis animation explains how self-regenerating bacterial hydrogels could be used as adhesive patches to help intestinal wounds heal. Credit: Wyss Institute at Harvard University.