Application Area: Personalized Medicine
154 Results for 'Personalized Medicine'
- Technologies (13)
- Collaborations (2)
- Team (0)
- News (101)
- Events (0)
- Multimedia (38)
- Publications (0)
- Jobs (0)
Technologies 13
-
SomaCode: Getting cell therapies where they need to go
The Problem Cell therapies, which involve using whole, living cells to treat disease, have been heralded as a next-generation treatment paradigm for a wide variety of illnesses and conditions. However, diseases are very complex, and therapeutic cells need to be able to demonstrate equally complex behaviors in order to effectively treat them. Among the largest... -
Soft Robotic Glove for Neuromuscular Rehabilitation
The soft robotic glove helps restore lost hand function in patients with neurological conditions using inflatable chambers that gently bend and straighten the fingers repeatedly. Wyss startup Imago Rehab launched in 2021 to commercialize this technology for at-home rehabilitation of stroke survivors, and aims to expand its offerings into other areas of rehabilitation. -
Athlete-Derived Probiotics
FitBiomics is commercializing probiotic supplements based on unique combinations of microbes found in elite athletes’ guts to help optimize the health and function of all humans. -
Biomaterial Scaffolds for T Cell Expansion
Immunotherapy, or tweaking the body’s own immune system to treat disease, is attracting significant attention in the medical field for its potential to offer long-lasting cures with fewer side effects than chemotherapy or other drugs. One type of immunotherapy involves isolating T cells (a type of white blood cell) from a patient’s body, sometimes modifying... -
Implantable Cancer Vaccine
The implantable cancer vaccine is an aspirin-sized disc that is implanted under the skin and serves as an artificial lymph node, recruiting and training a patient's own immune cells to find and kill their cancer cells. It was validated in a Phase I clinical trial at the Wyss Institute, and is currently being developed by Novartis to treat melanoma. -
JetValve for Heart Regeneration
The human heart beats approximately 35 million times every year, pumping blood into the circulation via four different heart valves. In more than four million people each year, heart valves fail for different reasons, including birth defects, age-related deteriorations and infections. At present, clinicians use either artificial prostheses or fixed animal and cadaver-sourced tissue to...
Collaborations 2
-
Brain Targeting Program
Pre-competitive multi-partner industry collaboration that aims to identify novel transport targets and shuttle compounds to enable more effective delivery of drugs to the brain. -
i3 Center: Biomaterials to Create T Cell Immunity
Cancer immunologists and biological engineers are developing new biomaterials-based approaches to develop new anti-cancer immunotherapies for treatment-resistant cancers.
News 101
Multimedia 38
-
Video/Animation2021 Kabiller Prize in Nanoscience and NanomedicineDavid R. Walt, a Wyss Core Faculty member, member of the faculty at Harvard Medical School in the Department of Pathology, and a Howard Hughes Medical Institute Professor, is the winner of the 2021 Kabiller Prize in Nanoscience and Nanomedicine, the world’s largest monetary award for outstanding achievement in the field of nanotechnology and its...
-
Audio/PodcastDisruptive: 3D BioprintingThere are roughly 120,000 people in the United States on waiting lists for live-saving organ transplants, with only about 30,000 transplants happening every year. To address this great challenge of organ shortages, a team at the Wyss Institute led by Core Faculty member Jennifer Lewis, Sc.D., is developing a method for 3D bioprinting organ tissues...
-
Video/AnimationA Swifter Way Towards 3D-printed Organs20 people die waiting for an organ transplant every day in the US, but lab-grown organs so far lack the cellular density and functions required to make them viable replacements. The new SWIFT method from the Wyss Institute and Harvard SEAS solves those problems by 3D printing vascular channel networks directly into living tissue constructs,...
-
Video/AnimationKidney Organiods: Flow-Enhanced Vascularization and Maturation In VitroThis video explains how the collaborative project created vascularized kidney organoids and how they advance the field of tissue engineering. Credit: Wyss Institute at Harvard University.
-
Video/AnimationScience Nation: Engineering soft robots for paradigm shift in rehabilitationThis video was produced by the National Science Foundation: Tim Gatautis suffered a spinal cord injury in a swimming accident nearly a decade ago and he’s had to use a wheelchair ever since. Gatautis would like to be able to do more for himself, which brings him to the Wyss Institute and the Biodesign Lab...
-
Video/AnimationTEDx Beacon Street Salon: Reversing Human AgingWyss Institute Core Faculty member George Church, Ph.D., was the opening speaker at the TEDx Beacon Street saloon event hosted at the Franklin Park Zoo. He presented from inside the tapir cage! Talk summary: Animals can be an extremely useful resource in prolonging human lives and promoting general health. For example, there are organs in...