Multimedia search results
9 Results for ''
-
Audio/PodcastReimagining Infertility – An Interview with Christian KrammeChristian Kramme imagines a world where all people can have a child on their own time frame. Such “reproductive autonomy” is not the case today – infertility is a growing problem worldwide, and existing treatments like IVF are incredibly taxing on women’s bodies and too expensive for most of the global population to access. Listen...
-
Video/AnimationeToehold: an RNA-detecting control element for use in RNA therapeutics, diagnostics and cell therapiesThis animation shows an example of an eToehold that detects and signals the presence of a specific viral RNA in a human cell. After the virus has injected its RNA into a host cell, the RNA acts as a “trigger RNA” by binding to a complementary sequence within the eToehold specifically engineered for its detection....
-
Video/AnimationKidney Organiods: Flow-Enhanced Vascularization and Maturation In VitroThis video explains how the collaborative project created vascularized kidney organoids and how they advance the field of tissue engineering. Credit: Wyss Institute at Harvard University.
-
Video/AnimationNew Wyss Institute Initiative – 3D Organ EngineeringWyss Institute Core Faculty members Christopher Chen and Jennifer Lewis describe the Wyss Institute’s new initiative focused on organ engineering, which leverages our expertise in biomaterials, tissue engineering, three dimensional biofabrication, and stem cell development.
-
Video/AnimationPodocyte Cells: Kidney-on-a-ChipThis video shows a 3-dimensional rendering of the glomerulus-on-a-chip with human stem cell-derived mature podocytes (in green) grown and differentiated in one channel (shown on top) and that extend their processes through the modeled glomerulus basement membrane towards glomerular vascular cells (in magenta) in the parallel running channel (shown on the bottom). Credit: Wyss Institute...
-
Video/AnimationEfficient Recovery of Stem Cell SheetsSee in this video how an intact sheet of mesenchymal stem cells, stained with a violet dye, can be lifted off the infused polymer substrate in the culture dish using a filter paper and transferred to a new surface. Credit: Wyss Institute at Harvard University
-
Video/AnimationBioprinting: Building in Blood VesselsBuilding in blood vessels. Then they addressed a big challenge in tissue engineering: embedding 3D vascular networks. They developed a ‘fugitive’ ink that can easily be printed, then suctioned off to create open microchannels that can then be populated with blood-vessel-lining cells to allow blood to flow. Read more: wyss.harvard.edu/viewpressrelease/141 Credit: Wyss Institute at Harvard...
-
Video/AnimationBioprinting: Building with Bio-InksBuilding with bio-inks. Using their custom-built printer, the fugitive ink for the vasculature, and other biological inks containing extracellular matrix and human cells, the researchers printed a 3D tissue construct. Credit: Wyss Institute at Harvard University
-
Video/AnimationBioprinting: Building Intricate StructuresBuilding intricate structures. The team first designed a custom printer that can precisely co-print multiple materials in 3D to create intricate heterogeneous patterns. Credit: Wyss Institute at Harvard University