Search results
110 Results for 'Chemical Engineering'
- Technologies (16)
- Collaborations (1)
- Team (0)
- News (67)
- Pages (0)
- Multimedia (26)
- Publications (0)
- Jobs (0)
- Events (0)
Technologies 16
-
AminoX: Making Biologics Safer with Synthetic Biology and Advanced Chemistry
AminoX enables protein drugs to only become active in the tumor microenvironment and not elsewhere in the body to avoid immune-related adverse effects in the body. By designing and building non-standard amino acids into strategic positions of protein drugs, AminoX provides tumor-specific, and longer-lasting target inhibition. -
Sugar-to-Fiber Enzyme for Healthier Food
In collaboration with Kraft Heinz, our sugar-to-fiber product can convert sugar in food products into prebiotic fiber in the human gut, reducing the amount of sugar absorbed into the bloodstream without altering the amount of sugar in existing food product recipes. -
eRapid: Multiplexed Electrochemical Detection of Complex Diseases
StataDX licensed the eRapid portable electrochemical sensing technology to develop diagnostics for neurological, cardiovascular, and renal diseases with a first focus on building a point-of-care platform for difficult-to-detect neurological disorders. -
Sparkle: Instant Biosensors for Real-Time Imaging
Sparkle is revolutionizing the binder assay industry by harnessing novel chemistry to create instant fluorescent biosensors for a wide variety of uses. -
Nanoarchitectures for Air Purification
Metalmark is using the Wyss Institute's butterfly-inspired nanoarchitecture coating to create air purification technology that can destroy airborne pollutants including chemicals, viruses, and smog in indoor and outdoor air at a fraction of the cost of current catalytic converter systems. -
Rapid Metabolite-Sensing System for Blood Lactate
In emergency medicine, blood lactate levels are a reliable real-time indicator of the severity and mortality risk of conditions that occur as a result of poor blood circulation and oxygen supply to organs and tissues (hypoperfusion), such as in patients with sepsis, cardiac arrest, stroke, major trauma, cystic fibrosis and other conditions. Lactate levels also...
Collaborations 1
News 67
Multimedia 26
-
Audio/PodcastResearching Biosensors with Dr. Pawan JollyPoint of Care Medical Devices are the future! Pawan Jolly, Ph.D., Senior Staff Scientist at The Wyss Institute for Biologically Inspired Engineering at Harvard University talks with Jonah and Aryan of the Beyond the Books podcast about his research in the biosensor and medical device arena. They ask him about his latest COVID-19 focused project,...
-
Video/AnimationBeating Back the Coronavirus: FDA-Approved Drug Repurposing PipelineWith the goal of rapidly repurposing FDA-approved drugs to treat COVID-19, the Wyss Institute is collaborating with the Frieman Lab at the University of Maryland Medical School and the tenOever Lab at the Icahn School of Medicine at Mount Sinai to establish a multidisciplinary pipeline that can rapidly predict, test, and validate potential treatments. Credit:...
-
Video/AnimationeRapid: Bringing Diagnostics HomeSenior Research Scientist, Pawan Jolly, gives an overview of the eRapid Institute Project, a platform of multiplexed electrochemical sensors for fast, accurate, portable diagnostics. Credit: Wyss Institute at Harvard University
-
Video/AnimationeRAPID: a Platform for Portable DiagnosticseRapid is an electrochemical sensing platform that uses a novel antifouling coating to enable low-cost, multiplexed detection of a wide range of biomolecules for diagnostics and other applications. Credit: Wyss Institute at Harvard
-
Video/AnimationLiquid-Infused Tympanostomy TubesResearchers at the Wyss Institute have developed next-generation tympanostomy tubes with an innovative material design that significantly reduces biofouling, implant size, need for revision surgeries, and promotes drug delivery into the middle ear. Credit: Wyss Institute at Harvard University
-
Video/AnimationLight-driven fine chemical production in yeast biohybridsWyss Institute Core Faculty member Neel Joshi explains the concept of yeast biohybrids and how they can be used to harvest energy from light to drive the production of fine chemicals. Credit: Wyss Institute at Harvard University