Search results
219 Results for 'Harvard SEAS'
- Technologies (23)
- Collaborations (1)
- Team (0)
- News (149)
- Pages (0)
- Multimedia (45)
- Publications (0)
- Jobs (0)
- Events (1)
Technologies 23
-
Injectable Hydrogel Adhesive for Improved Muscle Regeneration
A super-strong, stretchy, and self-healing biomaterial that adheres to muscles and helps them heal faster after injury. -
Metabolically Labeled CAR-T Cells Against Cancer
Through a simple and effective metabolic labeling approach, patient-derived T cells engineered to carry immune-enhancing cytokines on their surfaces could help expand adoptive T cell therapies to treatment of solid tumors and improve blood cancer therapies. -
ReConstruct: Vascularized tissue for breast reconstruction and augmentation
ReConstruct is a platform for growing, vascularizing, and implanting patient-derived tissues that enable safer breast reconstruction after cancer surgery. -
Cellular “Backpacks” to Fight Cancer, Autoimmune Disorders, and More
Macrophages are very malleable immune cells, but that also means that they can be influenced by cancerous tumors and inflammatory processes. Our cellular "backpacks" stick to macrophages and can deliver molecules that keep them in their desired state for cell therapy and more. -
Tunable ECMs for more effective T cell therapies
Tunable hydrogels that enhance the efficacies of adoptively transferred immune cells during their manufacturing by mimicking target tissue biomechanics. -
cSNAP: Eco-Friendly Air Conditioning
Our eco-friendly air conditioning technology is a low-carbon-footprint evaporative cooling system that reduces indoor air temperature without adding humidity.
Collaborations 1
News 149
Multimedia 45
-
Video/AnimationProject Air: Bioinspired Sensor of Volatile CompoundsWe are bringing to market an innovative, bioinspired sensor of volatile compounds that gives building operators confidence in the measurement of gasses indoors and provides guidance to achieving healthy indoor air quality (IAQ). Project Air is affordable, accurate, and highly sensitive thanks to the advanced data collection and processing implemented to substantially increase the reliability...
-
Video/AnimationReachable – Restoring arm function after strokeThe Reachable project from Conor Walsh’s lab is a wearable shoulder device that assists patients with upper limb disability. Stroke survivor and collaborator, Julie Hahnke, shares her experience working with the research team, using the current prototype, and her hopes for how this technology could improve the rehabilitation outcomes of stroke patients and others suffering...
-
Video/AnimationReConstruct – 3D Bioprinted Vascularized Fat Tissues for Breast ReconstructionBreast cancer affects 15% of all women. Current options for breast reconstruction are insufficient and have poor patient outcomes. A research team at the Wyss Institute is addressing this clinical need by fabricating vascularized adipose tissue flaps for therapeutic use. Credit: Wyss Institute at Harvard University
-
Video/AnimationMetabolic T cell Labeling: simple and effective enhancement of therapeutic T cells with immune-stimulating cytokinesThis animation shows how the surface of patient-derived T cells is metabolically labeled with azido-sugar molecules that then can be used to attach immune-enhancing cytokines with the help of click chemistry. The approach could help expand adoptive T cell therapies to treatment of solid tumors. Credit: Wyss Institute at Harvard University
-
Video/AnimationSeed-dependent crisscross DNA-origami slatsThis animation explains how the newly invented crisscross origami method can be used to build functionalized micron-scale DNA megastructures composed of many unique DNA origami “slats,” each with their own complexity and interactive properties. Credit: Wyss Institute at Harvard University
-
Video/AnimationcSNAP: Reimagining CoolingWe are reimagining air-conditioners to meet increasing global cooling demand while combatting climate change. Our novel evaporative cooling technology, cSNAP, uses advanced materials science and design to make affordable, environmentally-positive eco-friendly air conditioners that work in most climates without the use of synthetic refrigerants. Credit: Wyss Institute at Harvard University